精英家教网 > 高中数学 > 题目详情
曲线y=x3-2x+4在点(1,3)处的切线的斜率为( )
A.
B.1
C.
D.
【答案】分析:求曲线在点处得切线的斜率,就是求曲线在该点处得导数值,先求导函数,然后将点的坐标代入即可求得结果.
解答:解:y=x3-2x+4的导数为:y=3x2-2,
将点(1,3)的坐标代入,即可得斜率为:k=1.
故选B.
点评:本题考查了导数的几何意义,它把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、若曲线y=x3-2x+a与直线y=x+1相切,则常数a的值为
-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-2x在点(1,-1)处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=-x3+2x在点(-1,-1)处的切线的倾斜角是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线y=x3-2x+4在点(1,3)处的切线为l,则直线l与坐标轴围成的三角形面积为(  )

查看答案和解析>>

同步练习册答案