已知曲线所围成的封闭图形的面积为,曲线C1的内切圆半径为.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆C2的标准方程;
(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.
(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.
(Ⅰ)由题意得 又,解得,. 因此所求椭圆的标准方程为. (Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为 ,. 解方程组得,, 所以. 设,由题意知, 所以,即, 因为是的垂直平分线,所以直线的方程为,即, 因此, 又,所以,故. 又当或不存在时,上式仍然成立. 综上所述,的轨迹方程为. (2)当存在且时,由(1)得,, 由解得,, 所以,,. 解法一:由于 , 当且仅当时等号成立,即时等号成立, 此时面积的最小值是. 当,. 当不存在时,. 综上所述,的面积的最小值为. 解法二:因为, 又,, 当且仅当时等号成立,即时等号成立,此时面积的最小值是. 当,. 当不存在时,. 综上所述,的面积的最小值为. |
科目:高中数学 来源: 题型:
(08年山东卷文)(本小题满分14分)
已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.
(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(2)若是与椭圆的交点,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.
(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(2)若是与椭圆的交点,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知曲线所围成的封闭图形的面积为,曲线的内
切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆。
(I)求椭圆的标准方程,
(Ⅱ)设AB是过椭圆中心的任意弦,是线段AB的垂直平分线。M是上异于椭圆
中心的点。
(1)若(为坐标原点),当点A在椭圆上运动时,求点M的轨迹方
程;
(2)若M是与椭圆的交点,求△AMB的面积的最小值。
查看答案和解析>>
科目:高中数学 来源:2008年山东省高考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com