【题目】已知椭圆的左焦点为F,短轴的两个端点分别为A,B,且,为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;
(3)已知是过点A的两条互相垂直的直线,直线与圆相交于P,Q两点,直线与椭圆C交于另一点R,求面积最大值时,直线的方程.
【答案】(1)(2)(3)
【解析】
(1)由题意可得,,由,,的关系,可得的值,进而得椭圆方程;
(2)设,即有,,,运用向量的数量积的坐标表示,可得,,求出的方程,代入椭圆方程,可得的坐标,求得的中点坐标和半径,进而可得圆的方程;
(3)设,代入椭圆方程可得,运用韦达定理和弦长公式,再由三角形的面积公式,运用配方和二次函数的最值得求法,即可得到所求直线的方程.
(1)由题意可得,即,又为等边三角形,可得,
所以,
所以,椭圆的方程为:.
(2)设,即有,,,
由题意得,,即为,解得,
代入椭圆方程可得,,解得,即有,,
所以直线方程为:,将其代入椭圆方程得:,
由,解得点坐标为,则中点为,
所以圆的半径为,
即以线段为直径的圆的方程为:.
(3)设,代入椭圆方程可得,,
解得,,则,
由题意可得直线的方程为,代入圆的方程中,
由弦长公式可得,
则的面积为
令,即有,
所以
所以当,即有,此时,有最大值,
即有直线的方程为.
科目:高中数学 来源: 题型:
【题目】在2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并同时超过对方2分时,才胜1局;在决胜局(第五局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜.在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲乙两队进行排球比赛:
(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来两队赢得每局比赛的概率均为,求甲队最后赢得整场比赛的概率;
(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为,乙发球时甲赢1分的概率为,得分者获得下一个球的发球权.设两队打了个球后甲赢得整场比赛,求x的取值及相应的概率p(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱中,底面为菱形,且侧棱 其中为的交点.
(1)求点到平面的距离;
(2)在线段上,是否存在一个点,使得直线与垂直?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合是由一些函数组成,满足如下性质:①对任意,均存在反函数,且;②对任意,方程均有解;③对任意、,若函数为定义在上的一次函数,则.
(1)若,,均在集合中,求证:函数;
(2)若函数()在集合中,求实数的取值范围;
(3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个不相等的非零向量,两组向量和均由2个和3个排列而成,记,表示所有可能取值中的最小值,则下列命题中
(1)有5个不同的值;(2)若则与无关;(3)若,则与无关;(4)若,则;(5)若,,则与的夹角为.正确的是( )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com