已知 设P:函数在R上单调递减; Q:不等式的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求的取值范围.
科目:高中数学 来源: 题型:
(本题满分16分)
(文科学生做)已知命题p:函数在R上存在极值;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
(理科学生做)已知命题p:对,函数有意义;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)
(文科学生做)已知命题p:函数在R上存在极值;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
(理科学生做)已知命题p:对,函数有意义;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
已知 设P:函数在R上单调递减; Q:不等式的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求的取值范围.
[解题思路]:“P或Q”是真命题,“P且Q”是假命题,根据真假表知,P,Q之中一真一假,因此有两种情况,要分类讨论.
查看答案和解析>>
科目:高中数学 来源:2010年福建省四地六校高二下学期第二次联考数学(文科)试题 题型:解答题
(本小题满分12分)已知,设P:函数在R上递增,Q:复数Z=(-4) + i所对应的点在第二象限。如果P且Q为假,P或Q为真,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com