精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=loga(x+2)-1(a>0,且a≠1),g(x)=x-1.

(1)若函数yf(x)的图象恒过定点A,求点A的坐标;

(2)若函数F(x)=f(x)-g(x)的图象过点,试证明函数F(x)在x∈(1,2)上有唯一零点.

【答案】(1) 过点A(-1,-1),(2) 函数F(x)在(1,2)上有唯一零点

【解析】试题分析:(1)由对数函数恒过点(1,0)可得,x+2=1,,即图象恒过A(-1,-1);(2)先求出函数F(x)的解析式,根据图象恒过点可求出a值,代回进而确定函数在(1,2)上是增函数,根据零点存在性定理可判断出零点唯一.

试题解析:(1)∵函数y=logax的图象恒过点(1,0),

∴函数f(x)=loga(x+2)-1(a>0,且a≠1)的图象恒过点A(-1,-1).

(2)F(x)=f(x)-g(x)=loga(x+2)-1-x-1

∵函数F(x)的图象过点

F(2)=,即loga4-1-2-1

a=2.

F(x)=log2(x+2)-x-1-1.

∴函数F(x)在(1,2)上是增函数.

又∵F(1)=log23-2<0,F(2)=>0,

∴函数F(x)在(1,2)上有零点,

故函数F(x)在(1,2)上有唯一零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,某小区准备将闲置的一直角三角形(其中∠B=,AB=a,BC=a)地块开发成公共绿地,设计时,要求绿地部分有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A′MN),现考虑方便和绿地最大化原则,要求M点与B点不重合,A′落在边BC上,设∠AMN=θ.

(1)若θ=时,绿地“最美”,求最美绿地的面积;

(2)为方便小区居民的行走,设计时要求将AN,A′N的值设计最短,求此时绿地公共走道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014全国1理21】设函数,曲线在点处的切线方程为

I)求

II)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.

(1) 求{an}的通项公式;

(2) 求证:+…+<1对任意正整数m都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.

(1)求直线l的方程.

(2)若点P(a,1)到直线l的距离为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为012345的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(写解题过程)

1)求所选用的两种不同的添加剂的芳香度之和等于4的概率;

2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线过点.

(1)若直线与曲线交于两点,求的值;

(2)求曲线的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)已知函数

1)若曲线在点处的切线与直线垂直,求实数的值;

2)若恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

同步练习册答案