【题目】已知函数f(x)=loga(x+2)-1(a>0,且a≠1),g(x)=x-1.
(1)若函数y=f(x)的图象恒过定点A,求点A的坐标;
(2)若函数F(x)=f(x)-g(x)的图象过点,试证明函数F(x)在x∈(1,2)上有唯一零点.
【答案】(1) 过点A(-1,-1),(2) 函数F(x)在(1,2)上有唯一零点
【解析】试题分析:(1)由对数函数恒过点(1,0)可得,令x+2=1,则,即图象恒过A(-1,-1);(2)先求出函数F(x)的解析式,根据图象恒过点,可求出a值,代回进而确定函数在(1,2)上是增函数,根据零点存在性定理可判断出零点唯一.
试题解析:(1)∵函数y=logax的图象恒过点(1,0),
∴函数f(x)=loga(x+2)-1(a>0,且a≠1)的图象恒过点A(-1,-1).
(2)F(x)=f(x)-g(x)=loga(x+2)-1-x-1,
∵函数F(x)的图象过点,
∴F(2)=,即loga4-1-2-1=,
∴a=2.
∴F(x)=log2(x+2)-x-1-1.
∴函数F(x)在(1,2)上是增函数.
又∵F(1)=log23-2<0,F(2)=>0,
∴函数F(x)在(1,2)上有零点,
故函数F(x)在(1,2)上有唯一零点.
科目:高中数学 来源: 题型:
【题目】如图所示,某小区准备将闲置的一直角三角形(其中∠B=,AB=a,BC=a)地块开发成公共绿地,设计时,要求绿地部分有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A′MN),现考虑方便和绿地最大化原则,要求M点与B点不重合,A′落在边BC上,设∠AMN=θ.
(1)若θ=时,绿地“最美”,求最美绿地的面积;
(2)为方便小区居民的行走,设计时要求将AN,A′N的值设计最短,求此时绿地公共走道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通项公式;
(2) 求证:++…+<1对任意正整数m都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.
(1)求直线l的方程.
(2)若点P(a,1)到直线l的距离为,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(写解题过程)
(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率;
(2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线过点.
(1)若直线与曲线交于两点,求的值;
(2)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com