精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)|2x3||2xa|aR.

(1)若不等式f(x)5的解集非空,求实数a的取值范围;

(2)若函数yf(x)的图象关于点对称,求实数a的值.

【答案】(1)(,-8][2,+).(2)a1.

【解析】试题分析:

(1)若不等式的解集非空,得,即可求实数的取值范围;

(2)若函数的图象关于点对称, ,即可求实数的值.

试题解析:

(1)||2x+3|-|2x-a||≤|2x+3-2x+a|=|3+a|,

∵不等式f(x)≤-5的解集非空,

∴-|3+a|≤-5,

∴a≤-8a≥2.

故实数a的取值范围是(-∞,-8]∪[2,+∞).

(2)∵函数y=f(x)的图象关于点对称,

∴f+f=0,

∴|2x+2|-|2x-1-a|+|-2x+2|-|-2x-1-a|=0,

由于对任意x为实数均成立,∴a=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的所有点横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后,得到曲线,在以为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程是.

(1)写出曲线的参数方程和直线的直角坐标方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a11,公差d0.a2a5a14分别是等比数列{bn}b2b3b4.

(1)求数列{an}{bn}的通项公式;

(2)设数列{cn}对任意自然数n均有成立,求c1c2c2016的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,a2=2,数列{anan+1}是公比为q (q>0)的等比数列,则数列{an}的前2n项和S2n____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AP⊥平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证:AP∥平面BEF

(2)求证:BE⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,底面ABCD为正方形,△GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.

(Ⅰ)求证:AP⊥平面GCD

(Ⅱ)求证:平面ADG∥平面FBC

(Ⅲ)若AP∥平面BDE,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

人数(单位:人)

第一组

[20,25)

2

第二组

[25,30)

a

第三组

[30,35)

5

第四组

[35,40)

4

第五组

[40,45)

3

第六组

[45,50]

2

 

()a的值并画出频率分布直方图;

()在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线x2y,点,抛物线上的点,过点B作直线AP的垂线,垂足为Q.

(1)求直线AP斜率的取值范围;

(2)|PA|·|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,

(1)设,若f(A)=0,求角A的值;

(2)若对任意的实数t,恒有,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案