精英家教网 > 高中数学 > 题目详情
1.要得到函数g(x)=$sin(2x+\frac{π}{6})$,只需将f(x)=cos2x的图象(  )
A.左移$\frac{π}{3}$个单位B.右移$\frac{π}{3}$个单位C.左移$\frac{π}{6}$个单位D.右移$\frac{π}{6}$个单位

分析 由条件利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:∵函数g(x)=$sin(2x+\frac{π}{6})$=cos($\frac{π}{3}$-2x)=cos(2x-$\frac{π}{3}$)=cos2(x-$\frac{π}{6}$),
故将f(x)=cos2x的图象向右平移$\frac{π}{6}$个单位,可得到函数g(x)=$sin(2x+\frac{π}{6})$的图象,
故选:D.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)-f(x)<0,则使得f(x)<0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B,∁R(A∩B);
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则$\frac{1}{m}+\frac{3}{n}$的最小
值为(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\sqrt{x}+\sqrt{y}≤a\sqrt{x+y}$(x>0,y>0)恒成立,则a的最小值为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数数列{an}满足:an+2=|an+1|-an(n=1,2,…),a1=a,a2=b,记集合M={an|n∈N*}.
(Ⅰ)若a=1,b=2,用列举法写出集合M;
(Ⅱ)若a<0,b<0,判断数列{an}是否为周期数列,并说明理由;
(Ⅲ)若a≥0,b≥0,且a+b≠0,求集合M的元素个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{AB}$=(m,2),$\overrightarrow{CD}$=(-2,4),若$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,则m=4,若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)${({\frac{13}{6}})^0}+{({\frac{1}{2}})^{-2}}-{({\frac{25}{4}})^{\frac{1}{2}}}+{({0.001})^{\frac{1}{3}}}$
(2)$lg4+lg25-{5^{{{log}_5}3}}+({log_2}9).({log_3}4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若b=2,B=2A,则c的取值范围是($\sqrt{2}$,$\frac{4\sqrt{3}}{3}$).

查看答案和解析>>

同步练习册答案