精英家教网 > 高中数学 > 题目详情
在平行四边形ABCD中,AC为一条对角线,
AB
=(2,4)
AC
=(1,3)
,则
AD
=(  )
A、(2,4)
B、(1,1)
C、(-1,-1)
D、(-2,-4)
分析:由已知中平行四边形ABCD中,AC为一条对角线,
AB
=(2,4)
AC
=(1,3)
,根据向量加减法的三角形法则,可得向量
BC
的坐标,根据平行四边形的几何特征及相等向量的定义,可得
AD
=
BC
,进而得到答案.
解答:解:∵平行四边形ABCD中,AC为一条对角线,
又∵
AB
=(2,4)
AC
=(1,3)

BC
=
AC
-
AB
=(-1,-1)
AD
=
BC
=(-1,-1)
故选C
点评:本题考查的知识点是向量的加法及其几何意义,熟练掌握向量加减法的三角形法则,及相等向量的定义是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AC与BD交于点O,E是线段CD的中点,若
AC
=
a
BD
=
b
,则
AE
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)在平行四边形ABCD中,
AE
=
1
3
AB
AF
=
1
4
AD
,CE与BF相交于G点.若
AB
=
a
AD
=
b
,则
AG
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,边AB所在直线方程为2x-y-3=0,点C(3,0).
(1)求直线CD的方程;
(2)求AB边上的高CE所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,点E为CD中点,
AB
=
a
AD
=
b
,则
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)在平行四边形ABCD中,若
AB
=(1,3)
AC
=(2,5)
,则向量
AD
的坐标为
(1,2)
(1,2)

查看答案和解析>>

同步练习册答案