精英家教网 > 高中数学 > 题目详情

【题目】集合A={x||x+1|<4},B={x|(x﹣1)(x﹣2a)<0}.
(1)求A,B;
(2)若A∩B=B,求实数a的取值范围.

【答案】
(1)解:A={x||x+1|<4}={x|﹣5<x<3},

当a>0.5时,B={x|1<x<2a}.

当a=0.5时,B=

当a<0.5时,B={x|2a<x<1}


(2)解:由(1)知,A={x|﹣5<x<3},

∵A∩B=B,

∴BA,

①当a>0.5时,B={x|1<x<2a}.

此时, ,则 <a≤1.5;

②当a=0.5时,B=.满足题意;

③当a<0.5时,B={x|2a<x<1}.

此时 ,则﹣2.5≤a<0.5.

综上所述,实数a的取值范围是[﹣2.5,1.5]


【解析】(1)通过解绝对值不等式得到集合A,对于集合B,需要对a的取值进行分类讨论:(2)A∩B=B,则B是A的子集,据此求实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a2=3,a5﹣2a3+1=0.
(1)求{an}的通项公式;
(2)若数列{bn}满足:{bn}=(﹣1)nann(+n∈N*),求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2 , 四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm.

(1)设矩形栏目宽度为xcm,求矩形广告面积S(x)的表达式
(2)怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 = .

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个零点.

(1)求满足条件的最小正整数的值;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论函数的单调性,并证明当时, ;

(Ⅱ)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是由个实数组成的有序数组,满足下列条件:①;②;③

.

(Ⅰ)当时,写出满足题设条件的全部

(Ⅱ)设,其中,求的取值集合;

(Ⅲ)给定正整数,求的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: , 左右焦点分别为F1 , F2 , 过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的为(
·(1)y= ,y=x﹣5;
·(2)y= ,y=
·(3)y=|x|,y=
·(4)y=x,y=
·(5)y=(2x﹣5)2 , y=|2x﹣5|.
A.(1),(2)
B.(2),(3)
C.(3),(5)
D.(3),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当为常数,且在区间变化时,求的最小值

(2)证明:对任意的,总存在,使得

查看答案和解析>>

同步练习册答案