精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.
分析:(1)直接代入计算即可:[f(1)]2-[g(1)]2=[f(1)+g(1)][f(1)-g(1)];
(2)先利用平方差公式化得:[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)],再将条件整体代入即可.
解答:解:(1)[f(1)]2-[g(1)]2=[f(1)+g(1)][f(1)-g(1)]=2×
1
2
=.
(2):[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]
=(
2x+2-x
2
+
2x-2-x
2
) ( 
2x+2-x
2
-
2x-2-x
2
)

=2x×2-x=1为定值.
∴本题得证.
点评:本小题主要考查函数的值、函数恒成立问题等基础知识,考查运算求解能力,解答关键是利用整体思想代入求解,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案