精英家教网 > 高中数学 > 题目详情

【题目】即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数.

1)写出的函数关系式;

2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)

【答案】(1) ;(2)每次应拖挂节车厢才能使每天的营运人数最多为人.

【解析】

试题(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值.

试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节,

则设. 将点代入,解得

.

(2)每次拖挂节车厢每天营运人数为

时,总人数最多为人.

故每次应拖挂节车厢才能使每天的营运人数最多为人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义域为R的奇函数a为实数)

1)求a的值;

2)判断的单调性(不必证明),并求出的值域;

3)若对任意的,不等式恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其中一个焦点的坐标为.

(1)求椭圆的方程;

(2)过椭圆右焦点的直线与椭圆交于两点,在轴上是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)若,求证:函数为奇函数;

2)若,判断并证明函数的单调性;

3)若,函数在区间上的取值范围是,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的,都有.

1)判断函数的单调性,并说明理由;

2)若,求实数的取值范围;.

3)若不等式对任意都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年以来,我国国内非洲猪瘟疫情严重,引发猪肉价格上涨.因此,国家为保民生采取宏观调控对猪肉价格进行有效地控制.通过市场调查,得到猪肉价格在近四个月的市场平均价(单位:/)与时间 (单位:)的数据如下:

8

9

10

11

28.00

33.99

36.00

34.02

现有三种函数模型:,找出你认为最适合的函数模型,并估计201912月份的猪肉市场平均价为(

A.28B.25C.23D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的最小值;

若对任意,恒有成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x-cos2x的图象向左平移m(m>0)个单位以后得到的图象与函数y=ksinxcosx(k>0)的图象关于(,0)对称,则k+m的最小正值是

A. 2+ B. 2+ C. 2+ D. 2+

查看答案和解析>>

同步练习册答案