精英家教网 > 高中数学 > 题目详情

(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.

(1)写出该物体的温度关于时间的函数关系式;

(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;

(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.

 

【答案】

(1)(2)11:00和14:00时,该物体的温度最高,最高温度为(3)在8:00到16:00这段时间的平均温度为

【解析】

试题分析:(1)根据条件,得

可以解得

.                                               ……4分

(2)

时,

时,

在区间上单调递增,在上单调递减,即是极大值点.……8分

在10:00到14:00这段时间中,11:00和14:00时,该物体的温度最高,最高温度为

(3)按规定,平均温度为

即该物体在8:00到16:00这段时间的平均温度为.                        ……12分

考点:本小题主要考查函数的实际应用、利用导数求最值和定积分的计算,考查学生应用数学知识解决实际问题的能力和由实际问题向数学问题转化的能力以及求解计算能力.

点评:利用导数求解实际生活中的最值问题是高考常考考点,主要是函数模型的建立,对函数解析式的求导,判断单调性,求最值等.问题背景虽然各不相同,但函数模型有限,要总结规律,找出共同的分析思路和一般的解决方法,做到思路清晰,解法成熟,胸有成竹.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案