精英家教网 > 高中数学 > 题目详情

【题目】 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

【答案】当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.

【解析】

设广告的高为宽分别为x cmy cm,则每栏的高和宽分别为x20其中x20y25

两栏面积之和为2(x20),由此得y=

广告的面积S=xy=x()x

整理得S=

因为x200 所以S≥2

当且仅当时等号成立,

此时有(x20)214400(x20),解得x=140,代入y=+25,得y175

即当x=140y175时,S取得最小值24500

故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数a0,且a≠1).

1)求fx)的定义域;

2)判断fx)的单调性并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知pq

1)若pq充分不必要条件,求实数的取值范围;

2)若p”q”的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)与的图像关于直线y=x对称,则的单调递增区间为

A. B. (0,2) C. (2,4) D. (2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场去年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:

消费金额(单位:元)

购物单张数

25

25

30

由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:

(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;

(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的个红球和个黑球的不透明口袋中,随机摸出个小球,并记录两种颜色小球的数量差的绝对值,当时,消费者可分别获得价值元、元和元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)定义:“对于在区域上有定义的函数,若满足恒成立,则称曲线为曲线在区域上的紧邻曲线”.试问曲线与曲线是否存在相同的紧邻直线,若存在,请求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为轮船的最大速度为15海里小时当船速为10海里小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元假定运行过程中轮船以速度v匀速航行.

k的值;

求该轮船航行100海里的总费用燃料费航行运作费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(-1,2)且与两坐标轴的正半轴所围成的三角形面积等于

(1)求直线l的方程.

(2)求圆心在直线l上且经过点M(2,1),N(4,-1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的分布列,期望和方差.

附: ,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

同步练习册答案