精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ),设方程 的实根的个数为分别为,则

A. 9 B. 13 C. 17 D. 21

【答案】B

【解析】由条件可在函数的值域为,方程的根为0, ,所以方程的根为方程的根,显然方程有3个实根, 均无实根,所以方程的实根个数为3,即;因是奇函数,先考虑的图象,因,由,可知上递增,在上递减,又 ,由图象关于原点对称得的示意图如图:

极小值为

极大值为. 方程的实根为方程

的根,显然方程有3个根,

方程各有1个根,从而方程

实根的个数为5,即n=5;记方程除0外的另外两个实根

分别为,可知,方程的实根为方程的根,显然方程有3个根,方程各有1个根,从而方程根的个数为5,即t=5,故13.故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}{bn}中,a12b14,且anbnan1成等差数列,bnan1bn1成等比数列{nN}

a2a3a4b2b3b4,由此猜测{an}{bn}的通项公式,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱台中, , ,平面平面

(1)求证: 平面

(2)点上一点,二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, 底面 为棱中点.

(1)求证: 平面

(2)若中点, ,试确定的值,使二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为,求的分布列和数学期望.

参考数据:

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

昼夜温差

就诊人数(个)

16

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的2组数据恰好是相邻两个月的概率;

(2)若选取的是月与月的两组数据,请根据月份的数据,求出 关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?

参考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某商业公司为全面激发每一位职工工作的积极性、创造性,确保2017年超额完成销售任务,向党的十九大献礼.年初该公司制定了一个激励销售人员的奖励方案:每季度销售利润不超过15万元时,则按其销售利润的进行奖励;当季销售利润超过15万元时,若超过部分为万元,则超出部分按进行奖励,没超出部分仍按季销售利润的进行奖励.记奖金总额为 (单位:万元),季销售利润为 (单位:万元).

(Ⅰ)请写出该公司激励销售人员的奖励方案的函数表达式;

(Ⅱ)如果业务员李明在本年的第三季度获得5.5万元的奖金,那么,他在该季度的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.

参考格式: ,其中.

下面的临界值仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点在坐标原点,焦点轴上,过点的直线交抛物线于两点,线段的长度为8, 的中点到轴的距离为3.

(1)求抛物线的标准方程;

(2)设直线轴上的截距为6,且抛物线交于两点,连结并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

同步练习册答案