精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的 造价为150元,池壁每平方米的造价为120元.设池底长方形长为米.
(1)求底面积,并用含的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?

(1)池壁面积为(平方米);
(2)池底设计为边长40米的正方形时总造价最低,为297600元。

解析试题分析:(Ⅰ)分析题意,本小题是一个建立函数模型的问题,可设水池的底面积为S1,池壁面积为S2,由题中所给的关系,将此两者用池底长方形长x表示出来.
(Ⅱ)此小题是一个花费最小的问题,依题意,建立起总造价的函数解析式,由解析式的结构发现,此函数的最小值可用基本不等式求最值,从而由等号成立的条件求出池底边长度,得出最佳设计方案
解:(1)由题意水池底面积为(平方米)                 3分
池壁面积为(平方米)                     6分
(2)设水池总造价为元,则
              10分
当且仅当时取等号。
故池底设计为边长40米的正方形时总造价最低,为297600元。                   12分
考点:本题主要考查函数模型的选择与应用。
点评:解题的关键是建立起符合条件的函数模型,故分析清楚问题的逻辑联系是解决问题的重点,此类问题的求解的一般步骤是:建立函数模型,进行函数计算,得出结果,再将结果反馈到实际问题中指导解决问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分).某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同时满足条件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若
(2)若函数的图像上有与轴平行的切线,求的取值范围。
(3)若函数
的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分) 计算下列各式的值:
(1) ;
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若非零函数对任意实数均有,且当时,
(1)求证:         (2)求证:为减函数
(3)当时,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的最大值为,最小值为
(1)求
(2)作出的图像,并分别指出的最小值和的最大值各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
(1)
(2)已知,且,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,判断上的单调性,并证明.

查看答案和解析>>

同步练习册答案