精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心为,直线.

(1)求圆心的轨迹方程;

(2)若,求直线被圆所截得弦长的最大值;

(3)若直线是圆心下方的切线,当上变化时,求的取值范围.

【答案】(1);(2);(3).

【解析】试题分析:(1)由圆的方程,可得圆的圆心坐标为,即可得到圆心的轨迹方程;

(2)将圆的方程转化为圆的标准方程,得到圆心坐标和半径,再求得圆心到直线的距离,由圆的弦长公式,得到弦长的函数关系式,即可求解弦长的最大值;

(3)由直线与圆相切,建立的关系,,在由点在直线的上方,去掉绝对值,将转化为二次函数求解即可.

试题解析:

(1)圆的圆心坐标为.

所以圆心的轨迹方程为.

(2)已知圆的标准方程是.

则圆心的坐标是,半径为.

直线的方程化为:,则圆心到直线的距离是

设直线被圆所截得弦长为,由圆弦长、圆心距和圆的半径之间关系是:

,∴当时,的最大值为.

(3)因为直线与圆相切,则有.

.

又点在直线上方,∴,即

,∴.

,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 函数 在区间 上有1个零点; 函数 图象与 轴交于不同的两点.若“ ”是假命题,“ ”是真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由实数组成的等比数列{an}的前项和为Sn , 且满足8a4=a7 , S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N* , bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,面为正方形,面为等腰梯形,

I)求证: 平面

II)求与平面所成角的正弦值.

III)线段上是否存在点,使平面平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次汉马(武汉马拉松比赛的简称)全程比赛中,50名参赛选手(24名男选手和26名女选手)的成绩(单位:分钟)分别为数据 (成绩不为0).

24名男选手成绩的茎叶图如图⑴所示,若将男选手成绩由好到差编为124号,再用系统抽样方法从中抽取6人,求其中成绩在区间上的选手人数;

Ⅱ)如图⑵所示的程序用来对这50名选手的成绩进行统计.为了便于区别性别,输入时,男选手的成绩数据用正数,女选手的成绩数据用其相反数(负数),请完成图⑵中空白的判断框①处的填写,并说明输出数值的统计意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中a≠0,q:实数x满足.

(I)若a=1,且p∧q为真,求实数x的取值范围.

(II)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数yf(x)的导函数yf′(x)的图象则下面判断正确的是(   )

A. (21)f(x)是增函数 B. (13)f(x)是减函数

C. x2f(x)取极大值 D. x4f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,如果对任意都有为常数,则称为等差比数列,称为公差比.现给出下列命题:

等差比数列的公差比一定不为

等差数列一定是等差比数列;

,则数列是等差比数列;

若等比数列是等差比数列,则其公比等于公差比.

其中正确的命题的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,经过原点的两直线满足,且交圆于不同两点交 于不同两点,记的斜率为

(1)求的取值范围;

(2)若四边形为梯形,求的值.

查看答案和解析>>

同步练习册答案