精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=|sinx|+|cosx|,x∈R,则下列结论正确的是①②(写出所有正确结论的编号).
①f(x)为偶函数    
②f(x)的最大值为$\sqrt{2}$    
③f(x)的最小值为0
④f($\frac{9π}{10}$)>f($\frac{π}{9}$)    
⑤f(x)的最小正周期为π

分析 由f(x+$\frac{π}{2}$)=|sin(x+$\frac{π}{2}$)|+|cos(x+$\frac{π}{2}$)|=|cosx|+|sinx|,得f(x)的最小正周期$\frac{π}{2}$,分析函数y=|sinx|+|cosx|在[0,$\frac{1}{2}$]的图象、性质即可

解答 解:∵由f(x+$\frac{π}{2}$)=|sin(x+$\frac{π}{2}$)|+|cos(x+$\frac{π}{2}$)|=|cosx|+|sinx|=f(x),得f(x)的周期为$\frac{π}{2}$.
故只需考查函数y=|sinx|+|cosx|x∈[0,$\frac{π}{2}$]
当x∈[0,$\frac{π}{2}$]时,f(x)=sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})$
∵$x+\frac{π}{4}∈[\frac{π}{4},\frac{3π}{4}]$,∴$f(x)∈[1,\sqrt{2}]$
且函数f(x)在(0,$\frac{π}{4}$)上单调递增.
∵f(x)=f(-x),f(x)的周期为$\frac{π}{2}$.
∴f($\frac{9π}{10}$)=f($\frac{π}{10}$)$<f(\frac{π}{9})$.
故答案为:①②

点评 本题考查两角和与差的正弦函数,正弦函数的性质,考查等价转化思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别为锐角△ABC的三个内角A,B,C的对边,且acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A的大小;
(2)若a=$\sqrt{3}$,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于x的方程4x-m•2x+1+4=0有实数根,则m的取值范围(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)是定义域为R的任意函数
(Ⅰ)求证:函数g(x)=$\frac{f(x)-f(-x)}{2}$是奇函数,h(x)=$\frac{f(x)+f(-x)}{2}$是偶函数
(Ⅱ)如果f(x)=ln(ex+1),试求(Ⅰ)中的g(x)和h(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x),当0≤x≤$\frac{π}{2}$时,f(x)=x3sinx,设a=f(sin$\frac{π}{3}$),b=f(sin2),c=f(sin3),则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|2x-2<1},B={x|1-x≥0},则A∩B等于(  )
A.{x|0<x≤1}B.{x|1≤x<2}C.{x|x≤1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{x-1≤0}\end{array}\right.$则目标函数Z=3x+y的最小值为(  )
A.2B.3C.4D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$,则目标函数z=x-2y的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.矩形ABCD中,AB=2,AD=1,在矩形ABCD的边CD上随机取一点E,记“△AEB的最大边是AB”为事件M,则P(M)等于(  )
A.2-$\sqrt{3}$B.$\sqrt{3}$-1C.$\frac{2-\sqrt{3}}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

同步练习册答案