分析 由f(x+$\frac{π}{2}$)=|sin(x+$\frac{π}{2}$)|+|cos(x+$\frac{π}{2}$)|=|cosx|+|sinx|,得f(x)的最小正周期$\frac{π}{2}$,分析函数y=|sinx|+|cosx|在[0,$\frac{1}{2}$]的图象、性质即可
解答 解:∵由f(x+$\frac{π}{2}$)=|sin(x+$\frac{π}{2}$)|+|cos(x+$\frac{π}{2}$)|=|cosx|+|sinx|=f(x),得f(x)的周期为$\frac{π}{2}$.
故只需考查函数y=|sinx|+|cosx|x∈[0,$\frac{π}{2}$]
当x∈[0,$\frac{π}{2}$]时,f(x)=sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})$
∵$x+\frac{π}{4}∈[\frac{π}{4},\frac{3π}{4}]$,∴$f(x)∈[1,\sqrt{2}]$
且函数f(x)在(0,$\frac{π}{4}$)上单调递增.
∵f(x)=f(-x),f(x)的周期为$\frac{π}{2}$.
∴f($\frac{9π}{10}$)=f($\frac{π}{10}$)$<f(\frac{π}{9})$.
故答案为:①②
点评 本题考查两角和与差的正弦函数,正弦函数的性质,考查等价转化思想与运算求解能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0<x≤1} | B. | {x|1≤x<2} | C. | {x|x≤1} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2-$\sqrt{3}$ | B. | $\sqrt{3}$-1 | C. | $\frac{2-\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com