精英家教网 > 高中数学 > 题目详情
17.已知直线y=kx+4与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1有两个不同的交点,求k的取值范围.

分析 先联立直线与椭圆方程,化简得到一个关于x的一元二次方程,因为直线y=kx+4与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1有两个不同的交点,所以这个一元二次方程有两个不同的解,判别式大于0,由此即可得到m的范围.

解答 解:由$\left\{\begin{array}{l}y=kx+4\\ \frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1\end{array}\right.$可得,(4+3k2)x2+24kx+36=0
∵直线y=kx+4与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1有两个不同的交点,
∴△>0,即(24k)2-4×36(4+3k2)>0
∴k2>4,解得k<-2或k>2,
即k范围为{k|k<-2或k>2}.

点评 本题主要考查直线与椭圆相交交点的求法,以及根据一元二次方程根的判断来判断直线与椭圆交点个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的导数:
(1)y=xe-x
(2)y=ln(3x-2);
(3)y=$\frac{2-sinx}{cosx}$;
(4)f(x)=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,则f2016(x)=sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列函数的奇偶性:
(1)f(x)=x+3x3
(2)f(x)=(x-2)(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定点A(-1,0),圆C:x2+y2-2x-2$\sqrt{3}$y+3=0.
(1)过点A向圆C引切线,求切线长;
(2)过点A作直线l1交圆C于P、Q,且$\overrightarrow{AP}$=$\overrightarrow{PQ}$,求直线11的斜率k;
(3)定点M,N在直线l2:x=1上,对于圆C上任意一点R都满足RN=$\sqrt{3}$RM,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow{b}$=(1,$\sqrt{3}$),且f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求f(x)的周期,最大值,单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设Sn是等比数列{an}的前n项和,若a1=2a2=1,则Sn=2-($\frac{1}{2}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a为实常数,试求函数f(x)=|sinx(a+cosx)|(x∈R)的最大值.

查看答案和解析>>

同步练习册答案