精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ).

(1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;

(2)若在区间上不是单调函数,求的取值范围.

【答案】(1)最大值为8,最小值为;(2) .

【解析】试题分析:(1)由导数几何意义得,求导函数解得;再根据,得.再根据导函数求得零点,列表可得导函数符号,确定函数单调性,最后得到最值(2)由题意得导函数在上存在零点,所以的两根满足,解得的取值范围.

试题解析:(1)∵上,∴

∵点的图象上,∴

,∴

,解得 .

可知的极值点.

在区间上的最大值为8,最小值为.

(2)因为函数在区间上不是单调函数,所以函数上存在零点.

的两根为

都在上,则解集为空集,这种情况不存在;

若有一个根在区间上,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设二次函数,关于的不等式的解集有且只有一个元素.

1)设数列的前项和,求数列的通项公式;

2)记,则数列中是否存在不同的三项成等比数列?若存在,求出这三项,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(1)求C的方程;并求其准线方程;
(2)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于 ?若存在,求直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和直线 ,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极大值;

(2)若函数在区间 其中上存在极值,求实数的取值范围;

(3)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,
①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面是边长为 的正方形,AA1=3,点F在棱B1B上运动.

(1)若三棱锥B1﹣A1D1F的体积为 时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

同步练习册答案