【题目】已知函数(, ).
(1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;
(2)若在区间上不是单调函数,求的取值范围.
科目:高中数学 来源: 题型:
【题目】设二次函数,关于的不等式的解集有且只有一个元素.
(1)设数列的前项和,求数列的通项公式;
(2)记,则数列中是否存在不同的三项成等比数列?若存在,求出这三项,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(1)求C的方程;并求其准线方程;
(2)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于 ?若存在,求直线L的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,
①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面是边长为 的正方形,AA1=3,点F在棱B1B上运动.
(1)若三棱锥B1﹣A1D1F的体积为 时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com