【题目】已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.
(3)在(2)的条件下,试问x轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP,MQ的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=xln(ax)(a>0)
(1)设F(x)= 2+f'(x),讨论函数F(x)的单调性;
(2)过两点A(x1 , f′(x1)),B(x2f′(x2))(x1<x2)的直线的斜率为k,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:的离心率,F1,F2分别为左、右焦点,过F1的直线交椭圆C于P,Q两点,且的周长为8.
(1)求椭圆c的方程;
(2)设过点M(3,0)的直线交椭圆C于不同两点A,B,N为椭圆上一点,且满足(O为坐标原点),当时,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数f(x)在R上为增函数,且f(1)= ,若实数a满足f(loga3)﹣f(loga )≤1,则实数a的取值范围为( )
A.0<a≤
B.a≤
C. ≤a<1
D.a≥3或0<a<1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动圆经过点M(a﹣2,0),N(a+2,0),P(0,﹣2),其中a∈R.
(1)求动圆圆心的轨迹E的方程;
(2)过点P作直线l交轨迹E于不同的两点A、B,直线OA与直线OB分别交直线y=2于两点C、D,记△ACD与△BCD的面积分别为S1 , S2 . 求S1+S2的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为 , , .
(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com