精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-$\sqrt{3}$)bc,sinAsinB=cos2$\frac{C}{2}$,
(1)求角B的大小;
(2)若等差数列{an}的公差不为零,且a1cos2B=1,且a2、a4、a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

分析 (1)由a2-(b-c)2=(2-$\sqrt{3}$)bc,化简后利用余弦定理可求cosA,又0<A<π,解得A,由sinAsinB=cos2$\frac{C}{2}$,可得sinB=1+cosC,又C为钝角,解得cos(C+$\frac{π}{3}$)=-1,从而可求C,进而求得B的值.
  (2)设{an}的公差为d,由已知得a1=2,且(a1+3d)2=(a1+d)(a1+7d).解得d=2.an=2n.由$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.即可用裂项法求和.

解答 解:(1)由a2-(b-c)2=(2-$\sqrt{3}$)bc,可得:a${\;}^{2}-{b}^{2}-{c}^{2}=-\sqrt{3}bc$,
所以cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{2}$,又0<A<π,
∴A=$\frac{π}{6}$,
由sinAsinB=cos2$\frac{C}{2}$,可得$\frac{1}{2}$sinB=$\frac{1+cosC}{2}$,sinB=1+cosC,
∴cosC<0,则C为钝角.B+C=$\frac{5π}{6}$,则sin($\frac{5π}{6}$-C)=1+cosC,
∴cos(C+$\frac{π}{3}$)=-1,
解得C=$\frac{2π}{3}$,∴B=$\frac{π}{6}$.…(6分)
(2)设{an}的公差为d,由已知得a1=$\frac{1}{cosA}=2$,且a24=a2a8
∴(a1+3d)2=(a1+d)(a1+7d).
又d≠0,∴d=2.∴an=2n.…(9分)
∴$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Sn=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.…(12分)

点评 本题主要考查了余弦定理,三角函数恒等变换的应用,考查了等差数列,等比数列的性质和裂项法求和的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在区间[-2,2]上单调递增的是(  )
A.f(x)=sinxB.f(x)=ax+a-x(a>0,a≠1)
C.f(x)=ln$\frac{3+x}{3-x}$D.f(x)=ax-a-x,(a>0,a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0)时,f(x)=$\frac{1}{4^x}-\frac{a}{2^x}$(a∈R).
(1)讨论f(x)在(0,1]上的最大值;
(2)若f(x)是(0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①直线l的方向向量与向量$\overrightarrow a=({cosα,sinα})$共线;
②若$0<α<\frac{π}{4}$,则直线l与直线y=x的夹角为$\frac{π}{4}-α$;
③直线l与直线xsinα-ycosα+n=0(n≠m)一定平行;
写出所有真命题的序号①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.我校为进行“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为$\frac{37k}{{\sqrt{S}}}$元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为$\frac{12k}{{\sqrt{S}}}$元(k为正常数).
(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若曲线$\left\{\begin{array}{l}{x=2pt}\\{y=2p{t}^{2}}\end{array}\right.$,(t为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1、t2(且t1≠t2),则弦M1M2所在直线的斜率是(  )
A.t1+t2B.t1-t2C.$\frac{1}{{t}_{1+}{t}_{2}}$D.$\frac{1}{{t}_{1-}{t}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x≤a},B={x|-2≤x<1},若A∪B=A,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2ax+$\frac{1}{x}$(a∈R).
(1)当$a=\frac{1}{2}$时,试判断f(x)在(0,1]上的单调性并用定义证明你的结论;
(2)对于任意的x∈(0,1],使得f(x)≥6恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果定义在R上的函数f(x)对任意两个不等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“Z函数”.给出函数:①y=-x3+1;②y=2x;③$y=\left\{{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}}\right.$;④$y=\left\{{\begin{array}{l}{{x^2}+4x,x≥0}\\{-{x^2}+x,x<0}\end{array}}\right.$.以上函数为“Z函数”的序号为②④,.

查看答案和解析>>

同步练习册答案