精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*).
(I)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),存在,求x的取值范围;
(II)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示).
【答案】分析:(I)由题设知,所以.由t≠2,知.由t≠0,t≠2,
f(b)≠g(b),知,分析可得答案.
(II)因为g(x)=f-1(x),所以bn+1=f(an).然后用数学归纳法证明an+1<an(n∈N*).
解答:解:(I)由题设知,得
又已知t≠2,可得
由t≠0,t≠2,f(b)≠g(b),可知
所以是等比数列,其首项为,公比为
于是,即
存在,可得,所以-2<t<2且t≠0.
(II)证明:因为g(x)=f-1(x),
所以an=g(bn+1)=f-1(bn+1),即bn+1=f(an).
下面用数学归纳法证明an+1<an(n∈N*).
(1)当n=1(2)时,由f(x)(3)为增函数,且f(1)<1(4),
得a1=f(b1)=f(1)<1(5),b2=f(a1)<f(1)<1(6),a2=f(b2)<f(1)=a1(7),
即a2<a1,结论成立.
(8)假设n=k(9)时结论成立,即ak+1<ak(10).由f(x)(11)为增函数,得f(ak+1)<f(ak)(12),即bk+2<bk+1(13),进而得f(bk+2)<f(bk+1)(14),即ak+2<ak+1(15),这就是说当n=k+1(16)时,结论也成立.根据(1)和(2)可知,对任意的n∈N*(17),an+1<an(18).
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案