【题目】三条直线两两相交,可确定的平面个数是( )
A. 1 B. 1或3 C. 1或2 D. 3
科目:高中数学 来源: 题型:
【题目】已知α、β是不同的平面,l、m、n是不同的直线,P为空间中一点.若α∩β=l,mα、nβ、m∩n=P,则点P与直线l的位置关系用符号表示为___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线相交于,两点,且(为坐标原点),求;
(3)在(2)的条件下,求以为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,为其导函数,且时有极小值-9.
(1)求的单调递减区间;
(2)若,,当时,对于任意,和的值至少有一个是正数,求实数的取值范围;
(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的三个顶点,,,其外接圆为.
(1)求的面积;
(2)若直线过点,且被截得的弦长为2,求直线的方程;
(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,,使得点的线段的中点,求的半径的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,城市缺水尤为突出.某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.
(1)求图中的值并估计样本的众数;
(2)设该市计划对居民生活用水试行阶梯水价,即每位居民用水量不超过吨的按2元/吨收费,超过吨不超过2吨的部分按4元/吨收费,超过2吨的部分按照10元/吨收费.
①用样本估计总体,为使75%以上居民在该月的用水价格不超过4元/吨,至少定为多少?
②假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com