精英家教网 > 高中数学 > 题目详情
3.已知an=2n-1(n∈N*),把数列{an}的各项排成如图所示的三角形数阵,记S(m,n)表示该数阵中第m行中从左到右的第n个数,则S(8,6)=(  )
A.67B.69C.73D.75

分析 观察发现:数阵由连续的项的排列构成,且第m行有m个数,根据等差数列求和公式,得出S(8,6)是数阵中第几个数字,即时数列{an}中的相序,再利用通项公式求出.

解答 解:由数阵可知,S(8,6)是数阵当中第1+2+3+…+7+6=34个数据,也是数列{an}中的第34项,
而a51=2×34-1=67,所以S(8,6)对应于数阵中的数是67.
故选A.

点评 本题是规律探究型题目,此题要发现各行的数字个数和行数的关系,从而进行分析计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在数列{an}中,2a1=a2,且a${\;}_{n+1}=\frac{{a}_{n}}{n+1}+1$,则a3=$\frac{13}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不等式组$\left\{\begin{array}{l}x-1≥2016\\ x+1≤a\end{array}\right.$的解集中的元素有且仅有有限个数,则a=2018.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=3sin(2x-$\frac{π}{6}$).
(1)求函数f(x)的最小正周期、最小值;
(2)求函数f(x)图象的对称中心;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:函数f(x)=x2+2x+m的图象与x轴没有交点;命题q:m2-2m-3<0.若“p∨q”为真,“p∧q”为假.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:?x0∈Z,${x}_{0}^{2}$的个位数字等于3.则命题¬p:?x∈Z,x2的个位数字都不等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A=|0,1,2,3|,$B=\left\{{x\left|{\frac{x-3}{x-1}≤0}\right.}\right\}$,则A∩B=(  )
A.{1,2}B.{1,2,3}C.{2.3}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$.
(1)若a=1,求函数f(x)的极值;
(2)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A的坐标为(5,2),F为抛物线y2=x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,则点P的坐标是(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,2)C.($\sqrt{2}$,-2)D.(4,2)

查看答案和解析>>

同步练习册答案