精英家教网 > 高中数学 > 题目详情
数列{an}前n项和为Sn且an+Sn=1(n∈N*
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn
分析:(Ⅰ)只需要写出相邻的项对应的关系式,两式相减即可获得数列通项之间的关系,结合数列的特点即可获得解答;
(Ⅱ)结合(Ⅰ)可知数列{bn}满足bn+1-bn=an,通过错位相消即可求的数列{bn}的通项公式,再通过分组法即可求得数列的前n项公式.
解答:解:(Ⅰ)∵an+Sn=1,
∴an+1+Sn+1=1
两式相减得an+1-an+Sn+1-Sn=0.∴2an+1=an
∴{an}为公式为
1
2
的等比数列.
又n=1时,a1+S1=1.∴a1=
1
2

an=a1qn-1=
1
2
•(
1
2
)n-1=(
1
2
)n

∴{an}的通项公式:an=(
1
2
)
n
,n∈N*

(Ⅱ)∵bn+1=bn+anbn+1-bn=(
1
2
)n

b2-b1=
1
2
b3-b2=(
1
2
)2,  b4-b3=(
1
2
)3, ,  bn-bn-1=(
1
2
)n-1

相加,bn-b1=
1
2
+(
1
2
)2+(
1
2
)3++(
1
2
)n-1

∵b1=1,
bn=1+
1
2
+(
1
2
)2++(
1
2
)n-1═2(1-
1
2n
)

bn=2(1-
1
2n
)

Tn=2n-2(
1
2
+
1
22
++
1
2n
)=2n-2(1-
1
2n
)=2(n-1)+
1
2n-1

∴{bn}通项公式为:bn=2(1-
1
2n
),n∈N*

前n项和为:Tn=2(n-1)+
1
2n-1
,n∈N*
点评:本题考查的是数列的递推关系问题.在解答的过程当中充分体现了递推关系的处理、特殊数列的探究、错位相消的处理方法以及问题转化的能力.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}前n项和为Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.
(1)求数列{an}的通项公式.
(2)求使得Sn最小的序号n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn为数列{an}前n项和,a1=2,且an+1=Sn+1,则an=
2,n=1
 
.
 
.
 
.
 
.
 
.
,n≥2
.横线上填
3×2n-2
3×2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}前n项和为Sn(p-1)Sn=p2-an,n∈N*,p>0,且p≠1,数列{bn}满足bn=2logpan
(1)求an,bn
(2)若p=
1
2
,设数列{
bn
an
}
的前n项和为Tn,求证:0<Tn≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)已知点(an,an-1)在曲线f(x)=
(    )
x
上,且a1=1.
(1)求f(x)的定义域;
(2)求证:
1
4
(n+1)
2
3
-1≤
1
a1
+
1
a2
+…+
1
an
≤4(n+1)
2
3
-1
(n∈N*)
(3)求证:数列{an}前n项和Sn
(3n+2)
3n
2
-
3
2
(n≥1,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn为数列{an}前n项和,若S n=2an-2(n∈N+),则a2等于(  )

查看答案和解析>>

同步练习册答案