精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心为,左、右焦点分别为,上顶点为,右顶点为,且成等比数列.

1)求椭圆的离心率;

2)判断的形状,并说明理由.

【答案】1;(2)直角三角形,理由见解析

【解析】

1)设椭圆的长轴、短轴、焦距分别为,由题设可得,消ac齐次式,解得离心率;

2)设椭圆的方程为,则.方法一:利用向量,方法二:利用斜率,方法三:利用勾股定理,可得到是直角三角形.

1)设椭圆的长轴、短轴、焦距分别为

.

由题设,消得:.

解得:.

,则.

2)方法一:设椭圆的方程为

.

是直角三角形.

方法二:设椭圆的方程为

.

是直角三角形.

方法三:由条件得:在中,.

是直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆相关圆的方程为,若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.

1)求椭圆的方程和相关圆的方程;

2)若直线与圆相切,且与椭圆交于两点,为坐标原点.

①求证:

②求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程,焦点为,已知点上,且点到点的距离比它到轴的距离大1.

(1)试求出抛物线的方程;

(2)若抛物线上存在两动点在对称轴两侧),满足为坐标原点),过点作直线交两点,若,线段上是否存在定点,使得恒成立?若存在,请求出的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中恒不为0.

1)设,求函数x1处的切线方程;

2)若是函数的公共极值点,求证:存在且唯一;

3)设,是否存在实数ab,使得(0)上恒成立?若存在,请求出实数ab满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到.任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把“中间一段”去掉,这样,原来的条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每一条小线段重复上述步骤,得到了16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科曲线.若要科赫曲线的长度达到原来的100倍,至少需要通过构造的次数是( ).(取

A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为梯形,且ABDC,平面平面

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在算法中分别表示取商和取余数.为了验证三位数卡普雷卡尔数字黑洞(即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495.小明输入,则输出的

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

同步练习册答案