精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式是奇函数.
(1)求m的值;
(2)解关于x的不等式f-1(x)>b(b∈R,b是常数,b<-1).

解:(1)函数是奇函数,所以f(-x)+f(x)=0恒成立,
所以


所以1-(mx)2=1-x2
所以m=±1,
当m=1时f(x)=,无意义,
∴m=-1.
(2)可求得,f-1(x)=
f-1(x)>b即
令t=2x,t>0,则
即(t-1)[(b-1)t-(1+b)]<0,
它的两个根为t1=1,t2=
当b<-1时,b-1<0,,t1-t2=1-=->0,
∴2x或2x>1,
∴x<或x>0.
分析:(1)利用函数的奇函数,求出m值即可.
(2)求出反函数,利用f-1(x)>b,通过换元法,结合b的范围,求解不等式即可.
点评:本题考查函数的奇偶性,反函数的知识,含参数的不等式的解法是本题的难点,考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知函数f(x+1)是奇函数,则函数f(x-1)的图象关于
(2,0)
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)]( x2-x1)>0恒成立,设a=f (-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x+1)是奇函数,f (x-1)是偶函数,且f (0)=2,则f (2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当1<x1<x2时,
f(x2)-f(x1)
x2-x1
>0
恒成立,设a=f(-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-
12
),b=f(2),c=f(3)
,则a,b,c的大小关系为(按从小到大)
b<a<c
b<a<c

查看答案和解析>>

同步练习册答案