ÔÚÖ±½Ç×ø±êƽÃæÉÏÓÐÒ»µãÁÐP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­£¬¶ÔÒ»ÇÐÕýÕûÊýn£¬µãPnÔÚº¯Êýy=3x+
13
4
µÄͼÏóÉÏ£¬ÇÒPnµÄºá×ø±ê¹¹³ÉÒÔ-
5
2
ΪÊ×Ï-1Ϊ¹«²îµÄµÈ²îÊýÁÐ{xn}£®
£¨1£©ÇóµãPnµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬C3£¬¡­£¬Cn£¬¡­ÖеÄÿһÌõµÄ¶Ô³ÆÖᶼ´¹Ö±ÓÚxÖᣬÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¹ýµãDn£¨0£¬n2+1£©£®¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬Çó
1
k1k2
+
1
k2k3
+¡­+
1
kn-1kn
£»
£¨3£©ÉèS={x|x=2xn£¬n¡ÊN*}£¬T={y|y=4yn£¬n¡ÊN*}£¬µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬-265£¼a10£¼-125£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
·ÖÎö£º£¨1£©¸ù¾ÝµÈ²îÊýÁеÄͨÏʽ¿ÉÇóµÃxn£¬½ø¶ø´úÈëÖ±Ïß·½³ÌÇóµÃyn£¬ÔòµãPµÄ×ø±ê¿ÉµÃ£®
£¨2£©ÏÈÉè³öCnµÄ·½³Ì£¬°ÑDµã´úÈëÇóµÃa£¬½ø¶ø¶Ôº¯Êý½øÐÐÇóµÃÇóµÃÇÐÏßµÄбÂÊ£¬¼´knµÄ±í´ïʽ£¬½ø¶øÓÃÁÑÏî·¨ÇóµÃ
1
k1k2
+
1
k2k3
+¡­+
1
kn-1kn

£¨3£©¸ù¾ÝÁ½¼¯ºÏµÄÌصã¿ÉÖªS¡ÉT=T£¬½ø¶øÍƶϳöTÖÐ×î´óÊýa1=-17£®Éè{an}¹«²îΪd£¬Ôò¸ù¾Ýa10µÄ·¶Î§ÇóµÃdµÄ·¶Î§£¬½ø¶ø¸ù¾Ýd=-12mÇóµÃdµÄÖµ£®ÔòÊýÁÐ{an}µÄͨÏʽ¿ÉµÃ£®
½â´ð£º½â£º£¨1£©¡ßxn=-
5
2
+(n-1)¡Á(-1)=-n-
3
2
£¬
¡àyn=3xn+
13
4
=-3n-
5
4
£®
¡àPn(-n-
3
2
£¬-3n-
5
4
)
£®
£¨2£©¡ßCnµÄ¶Ô³ÆÖá´¹Ö±ÓÚxÖᣬÇÒ¶¥µãΪPn£¬
¡àÉèCnµÄ·½³ÌΪy=a(x+
2n+3
2
)2-
12n+5
4
£®
°ÑDn£¨0£¬n2+1£©´úÈëÉÏʽ£¬µÃa=1£¬
¡àCnµÄ·½³ÌΪy=x2+£¨2n+3£©x+n2+1£®
¡ßkn=y'|x=0=2n+3£¬
¡à
1
kn-1kn
=
1
(2n+1)(2n+3)
=
1
2
[
1
(2n+1)
-
1
(2n+3)
]
£¬
¡à
1
k1k2
+
1
k2k3
+
1
kn-1kn
=
1
2
[(
1
5
-
1
7
)+(
1
7
-
1
9
)++(
1
2n+1
-
1
2n+3
)]

=
1
2
(
1
5
-
1
2n+3
)=
1
10
-
1
4n+6
£®
£¨3£©T={y|y=-£¨12n+5£©£¬n¡ÊN*}={y|y=-2£¨6n+1£©-3£¬n¡ÊN*}£¬
¡àS¡ÉT=T£¬TÖÐ×î´óÊýa1=-17£®
Éè{an}¹«²îΪd£¬Ôòa10=-17+9d¡Ê£¨-265£¬-125£®£©Óɴ˵Ã-
248
9
£¼d£¼-12
£®
ÓÖ¡ßan¡ÊT£®
¡àd=-12m£¨m¡ÊN*£©
¡àd=-24£¬
¡àan=7-24n£¨n¡ÊN*£¬n¡Ý2£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐÇóºÍÎÊÌ⣮¿¼²éÁËÓÃÁÑÏî·¨ÇóºÍµÄ·½·¨ÔËÓúͶÔÊýÁлù´¡ÖªÊ¶µÄ×ÛºÏÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨08ÄêÁijÇÊÐËÄÄ£Àí£© £¨14·Ö£©  ÔÚÖ±½Ç×ø±êƽÃæÉÏÓÐÒ»µãÁÐλÓÚÖ±ÏßÉÏ£¬ÇÒPnµÄºá×ø±ê¹¹³ÉÒÔΪÊ×Ï£­1Ϊ¹«²îµÄµÈ²îÊýÁÐ{xn}.

   £¨1£©ÇóµãPnµÄ×ø±ê£»

   £¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬¡­£¬Cn£¬¡­ÖеÄÿһÌõµÄ¶Ô³ÆÖᶼ´¹Ö±ÓÚxÖᣬµÚnÌõÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¾­¹ýµãDn£¨0£¬n2+1£©. ¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬ÇóÖ¤£º£»

   £¨3£©É裬µÈ²îÊýÁÐ{an}µÄÈÎÒâÒ»ÏÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬ÇÒ£­256<a10­<£­125£¬ÇóÊýÁÐ{an}ͨÏʽ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011½ì½­ËÕÊ¡ËÕÖÝÊкìÐÄÖÐѧ¸ßÈýÃþµ×¿¼ÊÔÊýѧ¾í ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö12·Ö£©ÔÚÖ±½Ç×ø±êƽÃæÉÏÓÐÒ»µãÁР¶ÔÒ»ÇÐÕýÕûÊýn£¬µãPnÔÚº¯ÊýµÄͼÏóÉÏ£¬ÇÒPnµÄºá×ø±ê¹¹³ÉÒÔΪÊ×Ï£­1Ϊ¹«²îµÄµÈ²îÊýÁÐ{xn}.
£¨1£©ÇóµãPnµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬C3£¬¡­£¬Cn£¬¡­ÖеÄÿһÌõµÄ¶Ô³ÆÖᶼ´¹Ö±ÓÚxÖᣬÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¹ýµãDn£¨0£¬£©.¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬Çó
£¨3£©ÉèµÈ²îÊýÁеÄÈÎÒ»ÏÆäÖÐÊÇÖеÄ×î´óÊý£¬£¬ÇóÊýÁеÄͨÏʽ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010-2011ѧÄê½­ËÕÊ¡ËÕÖÝÊиßÈýÃþµ×¿¼ÊÔÊýѧ¾í ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö12·Ö£©ÔÚÖ±½Ç×ø±êƽÃæÉÏÓÐÒ»µãÁР¶ÔÒ»ÇÐÕýÕûÊýn£¬µãPnÔÚº¯ÊýµÄͼÏóÉÏ£¬ÇÒPnµÄºá×ø±ê¹¹³ÉÒÔΪÊ×Ï£­1Ϊ¹«²îµÄµÈ²îÊýÁÐ{xn}.

£¨1£©ÇóµãPnµÄ×ø±ê£»

£¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬C3£¬¡­£¬Cn£¬¡­ÖеÄÿһÌõµÄ¶Ô³ÆÖᶼ´¹Ö±ÓÚxÖᣬÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¹ýµãDn£¨0£¬£©.¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬Çó

£¨3£©ÉèµÈ²îÊýÁеÄÈÎÒ»ÏÆäÖÐÊÇÖеÄ×î´óÊý£¬£¬ÇóÊýÁеÄͨÏʽ.

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010¼¯ÄþÒ»ÖÐѧ¸ßÈýÄ꼶Àí¿ÆÊýѧµÚһѧÆÚÆÚÄ©¿¼ÊÔÊÔÌâ ÌâÐÍ£º½â´ðÌâ

ÔÚÖ±½Ç×ø±êƽÃæÉÏÓÐÒ»µãÁУ¬¶ÔÒ»ÇÐÕýÕûÊý£¬µãλÓÚº¯ÊýµÄͼÏóÉÏ£¬Çҵĺá×ø±ê¹¹³ÉÒÔΪÊ×Ï­Îª¹«²îµÄµÈ²îÊýÁС£

¢ÅÇóµãµÄ×ø±ê£»

¢ÆÉèÅ×ÎïÏßÁÐÖеÄÿһÌõµÄ¶Ô³ÆÖᶼ´¹Ö±ÓÚÖᣬµÚÌõÅ×ÎïÏߵĶ¥µãΪ£¬ÇÒ¹ýµã£¬¼ÇÓëÊýÁÐÏàÇÐÓÚµÄÖ±ÏßµÄбÂÊΪ£¬Ç󣺡£

¢ÇÉ裬µÈ²îÊýÁеÄÈÎÒ»ÏÆäÖÐÊÇÖеÄ×î´óÊý£¬£¬ÇóµÄͨÏʽ¡£

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸