精英家教网 > 高中数学 > 题目详情
(2012•北海一模)定义在R上的奇函数y=f(x),对任意不等的实数x1,x2都有[f(x1)-f(x2)](x1-x2)<0成立,若不等式f(x2-2x)+f(2y-y2)≤0成立,则当1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]
分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函数f(x)是定义在R上的减函数;再利用函数f(x)是定义在R上的奇函数得f(-x)=-f(x),二者相结合及不等式得(x-y)(x+y-2)≥0,结合
y
x
的几何意义可求范围
解答:解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函数f(x)是定义在R上的减函数
又因为函数f(x)是定义在R上的奇函数,所以有函数f(-x)=-f(x)
∵f(x2-2x)+f(2y-y2)≤0
∴f(x2-2x)≤-f(2y-y2)=f(y2-2y)
∴x2-2x≥y2-2y即(x-y)(x+y-2)≥0,又1≤x≤4
x-y≥0
x+y-2≥0
1≤x≤4
x-y≤0
x+y-2≤0
1≤x≤4

作出不等式组表示的平面区域,如图所求的阴影部分,
令k=
y
x
,则k的几何意义是在可行域内任取一点,与原点(0,0)连线的斜率
x=4
y=x
可得C(4,4),由
x=4
y+x-2=0
可得B(4,-2)
∵KOC=KOA=1,KOB=-
1
2

结合图形可知,-
1
2
y
x
≤1

故答案为[-
1
2
,1]
点评:本题主要考查函数奇偶性和单调性的综合应用问题.关键点有两处:①判断出函数f(x)的单调性;②利用奇函数的性质得到函数f(-x)=-f(x)③明确目标函数的几何意义
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北海一模)定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(I)求数列{an}的通项;
(II)记bn=2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0
,则椭圆C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)如图,在120°二面角α-l-β内半径为1的圆O1与半径为2的圆O2分别在半平面α、β内,且与棱l切于同一点P,则以圆O1与圆O2为截面的球的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)i为虚数单位,复平面内表示复数z=
1+i
i
的点在(  )

查看答案和解析>>

同步练习册答案