精英家教网 > 高中数学 > 题目详情

【题目】用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?

【答案】解:根据题意可设容器的高为x,容器的体积为V, 则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)
求导可得到:V′=12x2﹣552x+4320
由V′=12x2﹣552x+4320=0得x1=10,x2=36.
所以当x<10时,V′>0,
当10<x<36时,V′<0,
当x>36时,V′>0,
所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,
所以当x=10,V有最大值V(10)=19600
故答案为当高为10,最大容积为19600
【解析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.
【考点精析】根据题目的已知条件,利用基本不等式在最值问题中的应用的相关知识可以得到问题的答案,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+an=4n﹣3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命题正确的序号是
①如果函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值为127
②数列{an}满足首项a1=2,ak+12﹣ak2=2,k∈N* , 当n∈M且n最大时,数列{an}有2048个.
③数列{an}(n=1,2,3,…,8)满足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果数列{an}中的每一项都是集合M的元素,则符合这些条件的不同数列{an}一共有33个.
④已知直线amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 则一共可以得到不同的直线196条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对任意,都有,则称函数是“以为界的类斜率函数”.

(1)试判断函数是否为“以为界的类斜率函数”;

(2)若实数,且函数是“以为界的类斜率函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,圆C

(1)过点向圆C引切线l,求切线l的方程;

(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;

(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+ ]= 的实数a的个数为(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中 ,点为线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值,若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|a﹣3<x<a+3},B={x|x2﹣2x﹣3>0}.
(1)若a=3,求A∩B,A∪B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案