【题目】已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为。
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当点P在椭圆上运动时,求证:以BD为直径的圆与直线PF恒相切.
【答案】(Ⅰ)椭圆C的方程为(Ⅱ)见解析
【解析】
(1)根据题意得到a,b,c的方程组,解方程组即得椭圆C的方程.(2)求证圆心到直线PF的距离等于|BD|,即证以BD为直径的圆与直线PF恒相切.
(1)由题意可设椭圆C的方程为 (a>b>0),F(c,0).
由题意知,解得b=,c=1.
故椭圆C的方程为,离心率为。
(2)证明:由题意可设直线AP的方程为y=k(x+2)(k≠0)。
则点D坐标为(2,4k),BD中点E的坐标为(2,2k).
由得
设点P的坐标为,则
所以
因为点F坐标为(1,0),
当k=±时,点P的坐标为,直线PF⊥x轴,点D的坐标为(2,±2).
此时以BD为直径的圆(与直线PF相切.
当时,则直线PF的斜率,
所以直线PF的方程为,
点E到直线PF的距离
又因为|BD|=4|k|,所以d=|BD|.
故以BD为直径的圆与直线PF相切.
综上得,当点P在椭圆上运动时,以BD为直径的圆与直线PF恒相切.
科目:高中数学 来源: 题型:
【题目】某市根据地理位置划分成了南北两区,为调查该市的一种经济作物(下简称 作物)的生长状况,用简单随机抽样方法从该市调查了 500 处 作物种植点,其生长状况如表:
其中生长指数的含义是:2 代表“生长良好”,1 代表“生长基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.
(1)估计该市空气质量差的作物种植点中,不绝收的种植点所占的比例;
(2)能否有 99%的把握认为“该市作物的种植点是否绝收与所在地域有关”?
(3)根据(2)的结论,能否提供更好的调查方法来估计该市作物的种植点中,绝收种植点的比例?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(Ⅰ)视分布在各区间内的频率为相应的概率,求;
(Ⅱ)将表示为的函数,求出该函数表达式;
(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如,则取的概率等于市场需求量落入的频率),求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形中,,为边的中点,将沿直线翻折成,若是线段的中点,则在翻折过程中,下列命题:
①线段的长是定值;
②存在某个位置,使;
③点的运动轨迹是一个圆;
④存在某个位置,使得面.
正确的个数是()
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.
(I)求的方程;
(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点满足: .
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线交于两点,点关于轴的对称点为(点与点不重合),证明:直线恒过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段: ,,,, , ,得到如图所示的频率分布直方图.问:
(Ⅰ)求这80名群众年龄的中位数;
(Ⅱ)若用分层抽样的方法从年龄在中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.
(I)试根据上述数据完成列联表:
(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com