精英家教网 > 高中数学 > 题目详情

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

(1),(2).

解析试题分析:(1)求具体函数解析式基本方法为待定系数法.所求解析式有三个参数,需要三个独立条件.一是,二是,三是,综合解得,(2)利用导数大于零求出函数对应增区间.函数定义域为一切实数,因此导数大于零对应的自变量取值范围为增区间,即由,但单调区间必须是连续区间,因此单调增区间为两个,在每个区间上都是单调增,但在并集上不具有单调性.
试题解析:(1)解: 的图象经过点,则
,
切点为,则的图象经过点
解得      6分
(2)
单调递增区间为                         10分
考点:函数解析式,利用导数求单调区间

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数的最大值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),在时取得极值.
(1)求实数的值;
(2)当时,求函数的最小值;
(3)当时,试比较的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当在区间上的最大值和最小值;
(Ⅱ)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)).
 
(1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);
(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)=,其中a为正实数.
①当a时,求f(x)的极值点;②若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

同步练习册答案