精英家教网 > 高中数学 > 题目详情
19.命题“对任意的x∈R,x2-x+1≥0”的否定是(  )
A.不存在x0∈R,x02-2x0+1≥0B.存在x0∈R,x02-2x0+1≤0
C.存在x0∈R,x02-2x0+1<0D.对任意的x∈R,x2-2x+1<0

分析 根据含量词的命题的否定形式:将“任意”换为“存在”,同时将结论否定,得到命题的否定.

解答 解:命题“对任意的X∈R,x2-x+1≥0”的否定是
“存在x0∈R,x02-2x0+1<0”
故选:C

点评 求含量词的命题的否定:一般先将量词“任意”与“存在”交换,同时将结论否定即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n∈N*),
(1)求使anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;
(2)求数列{bn}的前n项和Sn
(3)试证明:当q≥2时,对任意正整数n≥2,Sn不可能是数列{bn}中的某一项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设z=1+i,则|$\overline{z}$-3|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0},
(Ⅰ)当m=0时,求A∩B.
(Ⅱ)若p:x2-2x-3<0,q:(x-m+1)(x-m-1)≥0,且q是p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2015}}{2015}$,设函数F(x)=f(x+3)•g(x-4),且函数的所有零点均在[a,b](a,b∈Z)内,则b-a的最小值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.20+3$\sqrt{2}$B.16+8$\sqrt{2}$C.18+3$\sqrt{5}$D.18+6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),则S1+S2+…+S2017=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知p:x2-8x-20≤0;q:x2-2x+1-m2≤0(m>0);若¬p是¬q的充分而不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx-lnx-3)≥2f(3)-f(-2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为(  )
A.[$\frac{1}{2e}$,$\frac{ln6+6}{6}$]B.[$\frac{1}{e}$,$\frac{ln6+6}{3}$]C.[$\frac{1}{e}$,$\frac{ln3+6}{3}$]D.[$\frac{1}{2e}$,$\frac{ln3+6}{6}$]

查看答案和解析>>

同步练习册答案