精英家教网 > 高中数学 > 题目详情
已知垂直平行四边形所在平面,若,则平行则四边形一定是
A.正方形B.菱形C.矩形D.梯形
B
此题考查线面垂直的性质和判定、平行四边形是菱形的条件;由,所以是对角线互相垂直的平行四边形,所以是菱形,所以选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:
①若m∥β,n∥β,m、nα,则α∥β;
②若α⊥γ,β⊥γ,α∩β=m,nγ,则m⊥n;
③若m⊥α,α⊥β,m∥n,则n∥β;
④若n∥α,n∥β,α∩β=m,那么m∥n;
其中所有正确命题的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体中,
(1)求直线和平面所成的角;
(2)M为上一点且=,在上找一点N使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在三棱柱中,
每个侧面均为正方形,为底边的中点,为侧棱的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右下图,在长方体ABCD—A1B1C1D1中,已知AB=" 4," AD ="3," AA1= 2。 E、F分别是线段AB、BC上的点,且EB= FB=1.
(1) 求二面角C—DE—C1的余弦值;
(2) 求直线EC1与FD1所成的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线平面,垂足为,正四面体的棱长为4,在平面内,
是直线上的动点,则当的距离为最大时,正四面体在平面上的射影面
积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是正方体的棱的中点。
求证:①∥平面
②平面∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直角三角形ABC的斜边长AB="2," 现以斜边AB为轴旋转一周,得旋转体,当∠A=30°时,求此旋转体的体积与表面积的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图5所示:在边长为的正方形中,,且
分别交两点, 将正方形沿折叠,使得重合,
构成如图6所示的三棱柱 .
( I )在底边上有一点,且::, 求证:平面 ;
( II )求直线与平面所成角的正弦值

查看答案和解析>>

同步练习册答案