精英家教网 > 高中数学 > 题目详情
设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求证:
(Ⅰ)方程f(x)=0有实根.
(Ⅱ)-2<
a
b
<-1;设x1,x2是方程f(x)=0的两个实根,则.
3
3
≤|x1-x2|<
2
3
分析:(Ⅰ)针对a进行分类讨论,若a=0,f(0)f(1)≤0显然与条件矛盾,a≠0时,f(x)=3ax2+2bx+c为二次函数,只需考虑判别式即可;
(Ⅱ)利用根与系数的关系将(x1-x22转化成关于
b
a
的二次函数,根据
b
a
的范围求出值域即可.
解答:证明:(Ⅰ)若a=0,则b=-c,
f(0)f(1)=c(3a+2b+c)=-c2≤0,
与已知矛盾,
所以a≠0.
方程3ax2+2bx+c=0的判别式△=4(b2-3ac),
由条件a+b+c=0,消去b,得△=4(a2+c2-ac)=4[(a-
1
2
c)
2
+
3
4
c2]>0

故方程f(x)=0有实根.
(Ⅱ)由条件,知x1+x2=-
2b
3a
x1x2=
c
3a
=-
a+b
3a

所以(x1-x22=(x1-x22-4x1x2=
4
9
(
b
a
+
3
2
)2+
1
3

因为-2<
b
a
<-1

所以
1
3
≤(x1-x2)2
4
9

3
3
≤|x1-x2|<
2
3
点评:本题主要考查二次函数的基本性质、不等式的基本性质与解法,以及综合运用所学知识分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:
(Ⅰ)a>0且-2<
ba
<-1

(Ⅱ)方程f(x)=0在(0,1)内有两个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求证:a>0且-2<
ba
<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)•f(1)>0,求证:
(I) -2<
b
a
<-1

(II) 设x1,x2是方程f(x)=0的两个实根,则
3
3
≤|x1-x2|<
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)f(1)>0,求证:
(1)方程f(x)=0有实数根;
(2)-2<
b
a
<-1;
(3)设x1,x2是方程f(x)=0的两个实数根,则
3
3
≤|x1-x2|
3
2

查看答案和解析>>

同步练习册答案