精英家教网 > 高中数学 > 题目详情
已知a,b∈R,则a=-b是a2+b2≥-2ab的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义结合不等式的关系进行判断即可.
解答: 解:若a=-b,则
若a2+b2≥-2ab则a2+2ab+b2=(a+b)2≥0恒成立,
即a=-b是a2+b2≥-2ab的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,3cos(B-C)-1=6cosBcosC
(1)求cosA
(2)若a=3,S△ABC=2
2
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在y轴上,经过点(
3
,0),且离心率为
1
2
,则椭圆方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,长方形ABCD-A1B1C1D1中,M,N分别为AB,A1D1的中点,判断MN与平面A1BC1的位置关系,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

若α、β是两个相交平面,则在下列命题中,真命题的序号为
 
.(写出所有真命题的序号)
①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.
②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.
③若直线m?α,则在平面β内,不一定存在与直线m垂直的直线.
④若直线m?α,则在平面β内,一定存在与直线m垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“x>2且是x2>4的充要条件”,命题q:“?x∈R,2x>0”.则下列结论正确的是(  )
A、p∨q为假
B、p∧q为真
C、p∨(¬q)为假
D、p,q均为真

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,
a
=(cos
π
4
,sinφ),
b
=(sin
4
,cosφ),且
a
b

(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数y=f(x)的图象向右平移
π
2
个单位长度得到y=g(x)的图象,求y=g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,tanβ=
4
3

(Ⅰ)求tan(α-β);
(Ⅱ)求tan2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)=xα的图象经过点(2,4),则f(9)=(  )
A、1B、3C、9D、81

查看答案和解析>>

同步练习册答案