精英家教网 > 高中数学 > 题目详情
5.把函数y=sinx-$\sqrt{3}$cosx的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的值可以是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 利用辅助角公式化积,然后由x=0时角m-$\frac{π}{3}$的终边在y轴上求得m的值.

解答 解:y=sinx-$\sqrt{3}$cosx=2($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)=2sin(x-$\frac{π}{3}$).
向左平移m(m>0)个单位长度后,所得到的图象的函数解析式为y=2sin(x+m-$\frac{π}{3}$).
∵所得到的图象关于y轴对称,
∴$m-\frac{π}{3}=kπ+\frac{π}{2}$,m=kπ$+\frac{5π}{6}$,k∈Z.
取k=0,得m=$\frac{5π}{6}$.
故选:A.

点评 本题考查三角函数中的恒等变换应用,考查了三角函数的图象和性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.为求3+6+9+…+30的和,补全如图程序“条件”应填i≤10或i<11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的通项公式为${a_n}={(\sqrt{2})^{n-2}}$,则a1=(  )
A.$\sqrt{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将一个四面体PABC铁皮盒沿侧棱PA,PB,PC剪开,展平后恰好成一个正三角形.
(Ⅰ)在四面体PABC中,求证:PA⊥BC.
(Ⅱ)若$PA=\sqrt{2}$,求铁皮盒的容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列$\frac{1}{1×4},\frac{1}{4×7},\frac{1}{7×10},…,\frac{1}{(3n-2)(3n+1)}$,…,的前n项和为Sn
(1)计算S1,S2,S3,S4的值,并推测Sn的公式;
(2)用数学归纳法证明Sn的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求证:${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{1}{n+1}$(2n+1-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用数学归纳法证明2n>2n+1,n的第一个取值应是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设O是平面上一定点,A,B,C是平面上不共线的三点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|•cosB}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|•cosC}})$,λ∈[0,+∞),则点P的轨迹经过△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点A,B,C是圆心为原点O半径为1的圆上的三点,∠AOB=60°,$\overrightarrow{OC}$=a$\overrightarrow{OA}+b\overrightarrow{OB}$(a,b∈R),求a2+b2的最小值.

查看答案和解析>>

同步练习册答案