精英家教网 > 高中数学 > 题目详情

【题目】关于的方程的解集中只含有一个元素,则的取值集合为______.

【答案】

【解析】

先根据分式方程去分母得一元二次方程,再根据已知条件得出该一元二次方程的判别式和根的情况,得到关于的方程,求解可得的取值集合.

对关于的方程去分母,,要使关于的方程的解集中只含有一个元素,

则方程有两个相等的实数根,且该根不等于2,或者方程有两个不等的实数根,且这两根中只有一个根是0或是2,

当方程有两个相等的实数根,且该根不等于2,此时,解得,经检验得此时方程的根不等于2;所以满足题意;

当方程有两个不等的实数根,且这两根中只有一个根是0或是2,此时,解得,当方程的根为0时,即,解得,满足;当方程的根为2时,即,解得,满足

综上可得:的取值集合为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂家具车间做AB型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张AB型桌子分别需要1小时和2小时,漆工油漆一张AB型桌子分别需要3小时和1小时;又知木工和漆工每天工作分别不得超过8小时和9小时,设该厂每天做AB型桌子分别为x张和y张.

1)试列出xy满足的关系式,并画出相应的平面区域;

2)若工厂做一张AB型桌子分别获得利润为2千元和3千元,那么怎样安排AB型桌子生产的张数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作抛物线的两条切线,切点分别为,,,分别交轴于,两点,为坐标原点,则的面积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》第八章方程问题八:今有卖牛二、羊五,以买十三豕,有余钱一千。卖牛三、豕三,以买九羊,钱适足.卖羊六、豕八,以买五牛,钱不足六百.问牛、羊、豕各几何?如果卖掉2头牛和5只羊,可买13口猪,还余1000钱;卖掉3头牛和3口猪的钱恰好可买9只羊;而卖掉6只羊和8口猪,去买5头牛,还少600.问牛、羊、猪的价格各是多少”.按照题意,可解出牛______钱、羊______钱、猪______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把物体放在冷空气中冷却,如果物体原来的温度是,空气的温度是,则1min后物体的温度可由公式求得,其中k是常数,把温度是的物体放在15℃的空气中冷却,1 min后,物体的温度是.

1)求出k的值;

2)计算开始冷却多久后,上述物体的温度分别是

3)判断上述物体最终能否冷却到12℃,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:

如果A、B两个节目要相邻,且都不排在第3号位置,则节目单上不同的排序方式有(   )种

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,EF分别为棱VAVC的中点.

(1)求证:EF平面ABCD

(2)求证:平面VBD平面BEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以(单位:度)分组的频率分布直方图如下图:

若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:

月平均用电量(度)

使用峰谷电价的户数

3

9

13

7

2

1

(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);

(2)()将“一般用户”和“大用户”的户数填入下面的列联表:

一般用户

大用户

使用峰谷电价的用户

不使用峰谷电价的用户

()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?

0.025

0.010

0.001

5.024

6.635

10.828

附:

查看答案和解析>>

同步练习册答案