精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=x2+2(p-2)x+p,若在区间[0,1]内至少存在一个实根c,使f(c)>0,则实根p的取值范围是


  1. A.
    (1,4)
  2. B.
    (1,+∞)
  3. C.
    (0,+∞)
  4. D.
    (0,1)
C
分析:由于二次函数f(x)=x2+2(p-2)x+p的图象是开口方向朝上的抛物线,故二次函数f(x)=x2+2(p-2)x+p在区间[0,1]内至少存在一个实数c,使f(c)>0的否定为对于区间[0,1]内的任意一个x都有f(x)≤0,即f(0),f(1)均小于等0,由此可以构造一个关于p的不等式组,解不等式组即可求出实数p的取值范围.
解答:二次函数f(x)在区间[0,1]内至少存在一个实数c,使f(c)>0的否定是:
对于区间[-1,1]内的任意一个x都有f(x)≤0,


解得p≤0,
∴二次函数在区间[0,1]内至少存在一个实数c,
使f(c)>0的实数p的取值范围是 (0,+∞)
故选C.
点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,其中根据二次函数的图象是开口方向朝上的抛物线,得到对于区间[0,1]内的任意一个x都有f(x)≤0时,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案