精英家教网 > 高中数学 > 题目详情

【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用 分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量 的分布列与数学期望

【答案】
(1)解:这4个人中恰有2人去参加甲游戏的概率
(2)解:设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则

由于 互斥,故

所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为


(3)解:ξ的所有可能取值为0,2,4.由于 互斥, 互斥,故

所以ξ的分布列是

ξ

0

2

4

P

随机变量ξ的数学期望


【解析】(1)根据题意结合已知条件利用伯努利用概型公式代入数值求出结果即可。(2)根据题意利用已知条件由互斥事件的概率等于计算出结果即可。(3)结合题意分别求出各个随机变量下的概率值列表即可,再由数学期望的公式计算出结果即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别与BC,AD交于点P,Q,若 =t
(1)当t= 时,求证:平面SAE⊥平面MNPQ;
(2)是否存在实数t,使得二面角M﹣PQ﹣A的平面角的余弦值为 ?若存在,求出实数t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1

(1)求证:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知不等式ax23x6>4的解集为{x|x<1x>b}

1)求ab

2)解不等式ax2-(acbxbc<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,向量(

,满足.

(1)求角的大小;

(2)设 有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若函数 上为增函数,求正实数 的取值范围;
(2)当 时,求函数 上的最值;
(3)当 时,对大于1的任意正整数 ,试比较 的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数

(1)若,求函数的值域;

(2)设的三个内角所对的边分别为,若A为锐角且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2.

(1)求证:

(2)求证:∥平面

查看答案和解析>>

同步练习册答案