精英家教网 > 高中数学 > 题目详情
2.若函数f(x)=(x+1)(x2+ax)为奇函数,则a=-1.

分析 根据奇函数f(-x)=-f(x)即可求得a.

解答 解:∵f(x)在R上是奇函数;
∴f(-x)=(-x+1)(x2-ax)=-x3+ax2+x2-ax
=-(x+1)(x2+ax)=-x3-ax2-x2-ax;
∴a=-1.
故答案为:-1.

点评 考查奇函数的定义,及对定义的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数y=f(x)对任意实数x、y∈R满足:f(x•y)=f(x)+f(y)+1.
①求f(1)、f(-1)的值;
②证明:函数y=f(x)在R上是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=$\frac{1}{3}$,则cos2α=(  )
A.$-\frac{5}{9}$B.$\frac{{\sqrt{6}}}{3}$C.1D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若复数z满足|z-1-2i|=2,则|z-3|的最小值为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC中,AB=5,AC=9,若O为△ABC内一点,且满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,则$\overrightarrow{AO}$•$\overrightarrow{BC}$的值是28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在数列{an}中,a1=2,a2=3,an+2=3an+1-2an,则an=2n-1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=$\frac{2}{1+si{n}^{2}θ}$,直线?的极坐标方程为ρ=$\frac{4}{\sqrt{2}sinθ+cosθ}$.
(Ⅰ)写出曲线C1与直线?的直角坐标方程;
(Ⅱ)设Q为曲线C1上一动点,求Q点到直线?距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等比数列{an},a1=3-5,前8项的几何平均为9,则a3=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直三棱柱ABC-A1B1C1 中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.
(1)证明:C1F∥平面ABE;
(2)设P是BE的中点,求三棱锥P-B1C1F的体积.

查看答案和解析>>

同步练习册答案