精英家教网 > 高中数学 > 题目详情

【题目】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如下图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2013项为a2013 , 则a2013﹣5=(
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006

【答案】D
【解析】解:观察梯形数的前几项,得 5=2+3=a1
9=2+3+4=a2
14=2+3+4+5=a3
an=2+3+…+(n+2)= = (n+1)(n+4)
由此可得a2013=2+3+4+5+…+2011= ×2014×2017
∴a2013﹣5= ×2014×2017﹣5=1007×2017﹣5=2019×1006
故选:D
观察梯形数的前几项,归纳得an=2+3+…+(n+2),结合等差数列前n项和公式得an= (n+1)(n+4),由此可得a2013﹣5=1007×2017﹣5=2019×1006,得到本题答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若关于x的不等式f(x)≤0的解集为[﹣1,2],求实数a的值;
(2)当a<0时,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx= ,其中a0

)若a=1,求曲线y=fx)在点(2f2))处的切线方程;

)若在区间上,fx)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆 两点,交此抛物线于 两点,其中 在第一象限, 在第二象限.

(1)求该抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(x+ n展开式的二项式系数之和为256
(1)求n;
(2)若展开式中常数项为 ,求m的值;
(3)若展开式中系数最大项只有第6项和第7项,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z是复数,z+2i, 均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?

(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,已知向量 =(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t),θ∈R.
(1)若 ,且 ,求向量
(2)若向量 与向量 共线,常数k>0,求f(θ)=tsinθ的值域.

查看答案和解析>>

同步练习册答案