精英家教网 > 高中数学 > 题目详情

【题目】某同学理科成绩优异,今年参加了数学,物理,化学,生物4门学科竞赛.已知该同学数学获一等奖的概率为,物理,化学,生物获一等奖的概率都是,且四门学科是否获一等奖相互独立.

(1)求该同学至多有一门学科获得一等奖的概率;

(2)用随机变量表示该同学获得一等奖的总数,求的概率分布和数学期望

【答案】(1)(2)见解析

【解析】

(1)解:记“该同学获得个一等奖”为事件,根据相互独立时间的概率计算公式,即可求解;

(2)随机变量的可能取值为求得随机变量取每个值的概率,得到随机变量的分布列,利用公式求解数学期望即可.

(1)解:记该同学获得个一等奖为事件

所以该同学至多有一门学科获得一等奖的概率为

(2)随机变量的可能取值为0,1,2,3,4,

所以的概率分布为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.

(Ⅰ)求的轨迹方程;

(Ⅱ)当不重合)时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平行四边形OABC,顶点OAC分别表示0,32i,-24i,试求:

(1) 所表示的复数;

(2)对角线所表示的复数;

(3)B点对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》第八章方程问题八:今有卖牛二、羊五,以买十三豕,有余钱一千。卖牛三、豕三,以买九羊,钱适足.卖羊六、豕八,以买五牛,钱不足六百.问牛、羊、豕各几何?如果卖掉2头牛和5只羊,可买13口猪,还余1000钱;卖掉3头牛和3口猪的钱恰好可买9只羊;而卖掉6只羊和8口猪,去买5头牛,还少600.问牛、羊、猪的价格各是多少”.按照题意,可解出牛______钱、羊______钱、猪______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的偶函数,且时,均有,则满足条件的可以是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),直线的参数方程为为参数).

(1)若直线与圆相交于两点,求弦长,若点,求的值;

(2)以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,圆和圆的交点为,求弦所在直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

同步练习册答案