(本小题满分12分)
如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面;
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.
(1)平面
(2)=, 即二面角的大小是
(3)直线与平面D所成的角的正弦值为
【解析】解法一:(1)设与相交于点P,连接PD,则P为中点,
D为AC中点,PD//。
又PD平面D,
//平面D ……………………(4分)
(2)正三棱住,
底面ABC。
又BDAC
BD
就是二面角的平面角。
=,AD=AC=1
tan =
=, 即二面角的大小是 …………………(8分)
(3)由(2)作AM,M为垂足。
BDAC,平面平面ABC,平面平面ABC=AC
BD平面,
AM平面,
BDAM
BD = D
AM平面,连接MP,则就是直线与平面D所成的角。
=,AD=1,在RtD中,=,
,。
直线与平面D所成的角的正弦值为…………………(12分)
解法二:
(1)同解法一
(2)如图建立空间直角坐标系,
则D(0,0,0),A(1,0,0),(1,0,),B(0,,0),(0,,)
=(-1,,-),=(-1,0,-)
设平面的法向量为n=(x,y,z)
则n
n
则有,得n=(,0,1)
由题意,知=(0,0,)是平面
ABD的一个法向量。
设n与所成角为,
则,
二面角的大小是
(3)由已知,得=(-1,,),n=(,0,1)
则
直线与平面D所成的角的正弦值为
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com