精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax3-3x在(-1,1)上单调递减,则实数a的取值范围是(  )
A、a<1B、a≤1C、0<a<1D、0<a≤1
分析:求出f′(x),分两种情况当a小于等于0时,导函数恒小于0满足题意;当a大于0,根据导函数小于等于0列出不等式,求出x的取值范围,让x的最大值大于1列出关于a的不等式,求出a的取值范围,两者求出并集即可得到所有满足题意的a范围.
解答:解:∵f′(x)=3ax2-3,由题意f′(x)≤0在(-1,1)上恒成立.
若a≤0,显然有f′(x)<0;
若a>0,由f′(x)≤0得-
1
a
≤x≤
1
a
,于是
1
a
≥1,
∴0<a≤1,
综上知a≤1.
答案:B
点评:此题要求学生会利用导函数的正负研究函数的单调性,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a>0,a≠1)的反函数记为y=g(x),g(16)=2,则f(
12
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-2+2010(a>0且a≠1)恒过一定点,此定点坐标为
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案