精英家教网 > 高中数学 > 题目详情
(1)已知等差数列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1
分析:(1)依题意,利用等差数列的求和公式即可求得首项a1,继而可求得an
(2)利用分组求和法即可求得数列1+1,
1
2
+3,
1
4
+5,…,
1
2n-1
+2n-1的前n项和为Sn
解答:解:(1)∵等差数列{an}中,d=
1
3
,n=37,sn=629,
∴629=37a1+
37×(37-1)
2
×
1
3

解得:a1=11,
∴an=11+
1
3
(n-1)=
1
3
n+
32
3

(2)设数列1+1,
1
2
+3,
1
4
+5,…,
1
2n-1
+2n-1的前n项和为Sn
则Sn=(1+3+…+2n-1)+(1+
1
2
+
1
4
+…+
1
2n-1

=
(1+2n-1)n
2
+
1-(
1
2
)
n
1-
1
2

=n2+2-(
1
2
)
n-1
点评:本题考查数列的求和,着重考查等差数列的求和公式与通项公式的应用,考查等比数列的求和公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例1.已知等差数列{an}的第p项为r,第q项为S,(P≠q,r≠s);等差数列{bn}的第r项为p,第s项为q,试问这两个数列的公差有何关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知等差数列{an}满足a2+a4=4,a3+a5=10,求它的前10项的和
(2)已知数列{an}的前n项和Sn=3+2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知等差数列{an}的公差d>0,且a1,a2是方程x2-14x+45=0的两根,求数列{an}通项公式
(2)设bn=
2anan+1
,数列{bn}的前n项和为Sn,证明Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知等差数列{an},bn=
a1+a2+a3+…+ann
(n∈N*),求证:{bn}仍为等差数列;
(2)已知等比数列{cn},cn>0(n∈N*)),类比上述性质,写出一个真命题并加以证明.

查看答案和解析>>

同步练习册答案