精英家教网 > 高中数学 > 题目详情

【题目】已知是正项数列的前项和,.

1)证明:数列是等差数列;

2)设,数列的前项和

①求证:

②解关于的不等式:.

【答案】1)见解析;(2)①见解析;②

【解析】

1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求;

2)①,运用数列的错位相减法求和,结合等比数列的求和公式和不等式的性质,即可得证;

②原不等式化为,即,运用二项式定理和不等式的性质,可得解集.

1)证明:是正项数列的求和,

可得,则

时,,又

两式相减可得

化为

由正项数列,可得

可得数列是首项和公差均为1的等差数列;

2)①证明:,前项和

两式相减可得

化为

可得

化为,即

可得时,不成立,

故原不等式的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若当时,总有,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆:的离心率为y轴于椭圆相交于AB两点,CD是椭圆上异于AB的任意两点,且直线ACBD相交于点M,直线ADBC相交于点N

求椭圆的方程;

求直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线 两点,求点 的距离之积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为计算, 设计了如图所示的程序框图,则空白框中应填入( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( ).

A. ,“”是“”的必要不充分条件

B. 为真命题”是“为真命题” 的必要不充分条件

C. 命题“,使得”的否定是:“

D. 命题:“”,则是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头30天的日用水量数据(单位:)和使用了节水龙头30天的日用水量数据,得到频数分布表如下:

(一)未使用节水龙头30天的日用水量频数分布表

日用水量

频数

2

3

8

12

5

(二)使用了节水龙头30天的日用水量频数分布表

日用水量

频数

2

5

11

6

6

1)估计该家庭使用了节水龙头后,日用水量小于的概率;

2)估计该家庭使用节水龙头后,平均每天能节省多少水?(同一组中的数据以这组数据所在区间中点的值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S- ABCD中,SD⊥底面ABCDAB//DCAD ⊥ DC,AB=AD1DC=SD=2E为棱SB上的一点,且SE=2EB

(I)证明:DE⊥平面SBC

(II)证明:求二面角A- DE -C的大小

查看答案和解析>>

同步练习册答案