精英家教网 > 高中数学 > 题目详情

【题目】已知长方体,已知P是矩形内一动点,与平面所成角为,设P点形成的轨迹长度为,则_________;当的长度最短时,三棱锥的外接球的表面积为_____________.

【答案】

【解析】

先确定与平面所成角为,即得,从而根据弧长公式得,再根据二倍角正切公式得结果;先确定的长度最短时P点位置,再确定三棱锥的外接球的球心,根据外接圆半径求得球半径,即得球的表面积.

因为长方体平面

所以与平面所成角为,

因为与平面所成角为,所以

因为,所以

从而P点形成的轨迹为以A为圆心,2为半径的圆在矩形内一段圆弧,设其圆心角为,则

因此

因为,所以最小时,长度最短,此时P为AC与上面圆弧的交点,设外接圆圆心为,半径为

设三棱锥的外接球的球心为,半径为,

从而

因此球的表面积为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业引进现代化管理体制,生产效益明显提高,2019年全年总收入与2018年全年总收入相比增长了一倍,同时该企业的各项运营成本也随着收入的变化发生相应变化,下图给出了该企业这两年不同运营成本占全年总收入的比例,下列说法错误的是(

A.该企业2019年研发的费用与原材料的费用超过当年总收入的50%

B.该企业2019年设备支出金额及原材料的费用均与2018相当

C.该企业2019年工资支出总额比2018年多一倍

D.该企业2018年与2019研发的总费用占这两年总收入的20%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高二年级组织外出参加学业水平考试,出行方式为:乘坐学校定制公交或自行打车前往,大数据分析显示,当的学生选择自行打车,自行打车的平均时间为 (单位:分钟) ,而乘坐定制公交的平均时间不受影响,恒为40分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,乘坐定制公交的平均时间少于自行打车的平均时间?

(2)求该校学生参加考试平均时间的表达式:讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代重要建筑的室内上方,通常会在正中部位做出向上凸起的窟窿状装饰,这种装饰称为藻井.北京故宫博物院内的太和殿上方即有藻井(图1),全称为龙风角蝉云龙随瓣枋套方八角深金龙藻井.它展示出精美的装饰空间和造型艺术,是我国古代丰富文化的体现,从分层构造上来看,太和殿藻井由三层组成:最下层为方井,中为八角井,上为圆井.2是由图1抽象出的平面图形,若在图2中随机取一点,则此点取自圆内的概率为( )

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565256704/STEM/4d65bbaaf0c447efbbb2157ff8983df0.png]

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过作斜率为的直线两点,以线段为直径的圆.时,圆的半径为2.

1)求的方程;

2)已知点,对任意的斜率,圆上是否总存在点满足,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为1的正方形区域OABC内有以OA为半径的圆弧.现决定从AB边上一点D引一条线段DE与圆弧相切于点E,从而将正方形区域OABC分成三块:扇形COE为区域I,四边形OADE为区域II,剩下的CBDE为区域III.区域I内栽树,区域II内种花,区域III内植草.每单位平方的树、花、草所需费用分别为,总造价是W,设

1)分别用表示区域IIIIII的面积;

2)将总造价W表示为的函数,并写出定义域;

3)求为何值时,总造价W取最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是线段上的动点,以下结论:

平面

③三棱锥,体积不变;

中点时,直线与平面所成角最大.

其中正确的序号为( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线方程为,求的值;

2)求函数的极值点;

3)设,若当时,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设的极值点,求,并求的单调区间;

2)当时,证明.

查看答案和解析>>

同步练习册答案