精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为5.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

【答案】(1).(2)

【解析】试题分析:(1)求出抛物线的焦点坐标,结合题意列关于p的等式求p,则抛物线方程可求;
(2)由(1)求出M的坐标,设出直线DE的方程 ,联立直线方程和抛物线方程,化为关于y的一元二次方程后D,E两点纵坐标的和与积,利用 得到t与m的关系,进一步得到DE方程,由直线系方程可得直线DE所过定点.

试题解析:

(1)由题意设抛物线方程为

其准线方程为

到焦点的距离等于到其准线的距离,

,∴.

∴抛物线的方程为.

(2)由(1)可得点,可得直线的斜率不为0,

设直线的方程为:

联立,得

①.

,则.

,得:

,即

代人①式检验均满足

∴直线的方程为:.

∴直线过定点(定点不满足题意,故舍去).

点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某市2015年全年空气质量等级如表1所示.

1

空气质量等级(空气质量指数(AQI))

频数

频率

优(

83

22.8%

良(

121

33.2%

轻度污染(

68

18.6%

中度污染(

49

13.4%

重度污染(

30

8.2%

严重污染(

14

3.8%

合计

365

100%

20165月和6月的空气质量指数如下:

5 240 80 56 53 92 126 45 87 56 60

191 62 55 58 56 53 89 90 125 124

103 81 89 44 34 53 79 81 62 116

88

6 63 92 110 122 102 116 81 163 158 76

33 102 65 53 38 55 52 76 99 127

120 80 108 33 35 73 82 90 146 95

选择合适的统计图描述数据,并回答下列问题:

1)分析该市20166月的空气质量情况.

2)比较该市20165月和6月的空气质量,哪个月的空气质量较好?

3)比较该市20166月与该市2015年全年的空气质量,20166月的空气质量是否好于去年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性并证明;

2)若,判断的单调性并用复合函数单调性结论加以说明;

3)若,是否存在,使的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是我国某城市在2017年1月份至10月份各月最低温与最高温 的数据一览表

已知该城市的各月最低温与最高温具有线性相关关系,根据该一览表,则下列结论错误的是 ( )

A. 最低温与最高温为正相关

B. 每月最高温与最低温的平均值前8个月逐月增加

C. 月温差(最高温减最低温)的最大值出现在1月

D. 1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)当时,求在区间上的最值;

(2)讨论的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,,以为折痕把折起,使点到达点的位置.

(1)若,求三棱锥体积的最大值;

(2)若,证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间/

10

11

12

13

14

15

等候人数y/

23

25

26

29

28

31

调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.

(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间不相邻的概率;

(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;

(3)为了使等候的乘客不超过人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.

附:对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有大小和质地相同的4个球,其中有有2个红色球(标号为12),2个绿色球(标号为34),从袋中不放回地依次随机摸出2个球.设事件=“第一次摸到红球”,=“第二次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两个球颜色相同”,N=“两个球颜色不同”.

1)用集合的形式分别写出试验的样本空间以及上述各事件;

2)事件RRGMN之间各有什么关系?

3)事件R与事件G的并事件与事件M有什么关系?事件与事件的交事件与事件R有什么关系?

查看答案和解析>>

同步练习册答案