精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow a$=(cos($\frac{π}{2}$-x),sin($\frac{π}{2}$+x)),$\overrightarrow b$=(sin($\frac{π}{2}$+x),sinx),若x=-$\frac{π}{12}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 进行化简即可求出$\overrightarrow{a}=(sinx,cosx),\overrightarrow{b}=(cosx,sinx)$,根据$x=-\frac{π}{12}$即可求出$\overrightarrow{a}•\overrightarrow{b}$,及$|\overrightarrow{a}|,|\overrightarrow{b}|$的值,从而求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,从而得出向量$\overrightarrow{a},\overrightarrow{b}$的夹角.

解答 解:$\overrightarrow{a}=(sinx,cosx),\overrightarrow{b}=(cosx,sinx)$,且$x=-\frac{π}{12}$;
∴$\overrightarrow{a}•\overrightarrow{b}=2sinxcosx=sin2x$=$sin(-\frac{π}{6})=-\frac{1}{2}$,$|\overrightarrow{a}|=1,|\overrightarrow{b}|=1$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-\frac{1}{2}}{1×1}=-\frac{1}{2}$;
∴向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.
故选D.

点评 考查三角函数的诱导公式,二倍角的正弦公式,向量夹角的余弦公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-2x,g(x)=$\frac{1}{2}a{x^2}$.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),若函数h(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和Sn满足S2=-1,S5=5,则数列{$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$}的前2016项的和为(  )
A.$\frac{2016}{4033}$B.-$\frac{4032}{4031}$C.$\frac{2016}{4031}$D.-$\frac{2016}{4031}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α为△ABC的内角,且tanα=-$\frac{3}{4}$,计算:
(1)$\frac{sinα+cosα}{sinα-cosα}$;
(2)sin($\frac{π}{2}$+α)-cos($\frac{π}{2}$-α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在棱长为2的正四面体ABCD中,E,F分别是BC,AD的中点,则$\overrightarrow{AE}$$•\overrightarrow{CF}$=(  )
A.0B.-2C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线N:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,其中b>a>0,双曲线M和双曲线N交于A,B,C,D四个点,且四边形ABCD的面积为4c2,则双曲线M的离心率为(  )
A.$\frac{\sqrt{5}+3}{2}$B.$\sqrt{5}$+3C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,且a(sinA-sinB)+bsinB=csinC.
(Ⅰ)求角c的值
(Ⅱ)若2cos2$\frac{A}{2}$-2sin2$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$,且A<B,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线$\frac{1}{4}$y=x2的焦点坐标为(  )
A.(1,0)B.(2,0)C.(0,$\frac{1}{8}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[0,2]上任取两个实数x,y,则x2+y2≤1 的概率为$\frac{π}{16}$.

查看答案和解析>>

同步练习册答案